Характерным представителем семейства станков с автоматической подачей является станок модели Citoborma 490 немецкой фирмы Nagel. У этого модели имеются модификации по своим возможностям охватывающие все выше перечисленные параметры классификации бумагосверлильного оборудования (рис 1.2.1).
Citoborma 490 является характерным представителем класса напольных станков с автоматическим приводом. Аналогичного класса станки выпускаются ведущими фирмами производителями и имеют близкие по своим параметрам характеристики. Отличительной особенностью данной модели является наличие сверлильной головы, которая поставляется отдельно от станка по индивидуальному заказу потребителя. Это связано с тем, что головка имеет переменное количество сверл (до шести) и предусматривает возможность регулировки расстояния между ними. Фирма NAGEL выпускает бумагосверлильные машины с 1938 года и приобрела большой опыт в их конструировании и производстве. Разработанная этой фирмой конструкция сверлильной головы является достаточно сложной (рис. 1.2.2). Ее производство требует наличия высокотехнологичного предприятия с большим опытом таких работ. Очевидно, что это сказывается на конечной цене головки и станка в целом.
Техническая характеристика Citoborma 490
максимальная высота блока 60 мм
отступ от края 27 мм
кол-во сверлильных головок от 1 до 6
автоматический прижим есть
Ножной привод есть
диаметр сверл от 2 до 35 мм
Мощность 1,8 кВт
привод подачи сверлильных головок: автоматический
Время 1 такта работы 4 с
Габариты 1390 х 710 х 770 мм
Электропитание 380 в
Вес 265 кг
рис. 1.2.1
рис. 1.2.2
Для примера, по данным сайта www.offpoly.ru стоимость станка Citoborma 490 в различных модификациях без учета стоимости сверлильной головки колеблется в диапазоне от 473100,75 рублей до 593661,15 рублей. Стоимость сверлильной головки для Citoborma 490 сопоставима со стоимостью самого станка и составляет по данным сайта www.polyland.ru для варианта трехшпиндельной головки 19 мм для сверла 2-6 мм - 174049 рублей, для варианта шестишпинделной головки соответственно – 311081 рублей. Таким образом, в максимальной комплектации стоимость такого станка ≈ 900000 рублей.
Очевидно, что значительная стоимость такого оборудования является его недостатком, учитывая, что и стоимость его эксплуатации также будет высокой по причине высокой стоимости запасных импортных частей. Использовать такую сложную конструкцию станка для сверления отверстий по жесткому макету нецелесообразно и экономически не обосновано. Кроме того, во всех моделях станков применяется стандартная схема подачи сверлильной головки при неподвижном столе. Исключение составляет только модель Citoborma 490 Vario, в которой блок сверлильных головок неподвижен. Автоматическая подача блока сверлильных головок ведет к дополнительным затратам мощности на ее перемещения и усложняет конструкцию. Это также можно отнести к недостаткам этого типа оборудования.
Бумагосверлильное оборудование с настраиваемой сверлильной головкой и столом требует высокой квалификации оператора и квалифицированного обслуживания на стадии подготовки к производству. В конечном счете, это скажется на увеличении себестоимости выпускаемой продукции.
1.3 Технические требования к проектируемому станку.
Основная техническая характеристика станка следуют из задания на его проектирование (таблица 1.3.1).
Таблица 1.3.1
Формат книжного блока, мм | 210х270 | ||
Толщина книжного блока, мм | |||
максимальная | 40 | ||
минимальная | 10 | ||
Количество просверливаемых отверстий | 4 | ||
Диаметр отверстий, мм | 5 | ||
Расстояние между отверстиями, мм | 40-80-40 | ||
Частота вращения сверл, об/мин. | 1350 | ||
Давление сжатого воздуха, атм | 6 | ||
Мощность привода сверлильной головки, КВт | 1,1 |
Из анализа существующего оборудования (1.2) следует, что сверлильную головку целесообразно сделать неподвижной, с постоянной геометрией расположения сверл. В процессе сверления будет двигаться более легкая часть станка - книжный блок. Оптимальное время одного такта работы для существующего оборудования соответствует 4¸5 секунд. Так как станок работает в полуавтоматическом режиме, то оператор только устанавливает на рабочее место книжный блок. Его прижим на время сверления будет осуществляться автоматически.
Для упрощения конструкции станка, снижения его веса и уменьшения занимаемой площади принимаем настольный вариант исполнения. Кроме того, в конструкции станка должны быть предусмотрены меры по обеспечению безопасности оператора. В частности зона сверления книжного блока должна быть закрыта от случайного попадания в нее рук оператора. В конструкции станка должно также присутствовать обязательное заземление, так как питающее напряжение двигателя 380 вольт.
Исходя из выше изложенного, проектируемый станок должен иметь следующую техническую характеристику (таблица 1.3.2).
Таблица 1.3.2
Техническая характеристика проектируемого станка | |
формат книжного блока | 210х270 мм |
минимальная высота книжного блока | 10 мм |
максимальная высота книжного блока | 40 мм |
отступ от края | 25 мм |
расстояние между отверстиями | 40-80-40 мм |
количество сверл | 4 |
частота вращения сверл | 1350 об/мин |
автоматический прижим | есть |
диаметр сверл | 5 мм |
мощность | 1,1 кВт |
привод подачи книжного блока: | автоматический |
давление сжатого воздуха | 6 атм |
время 1 такта работы | 5 с |
электропитание | 380 в |
1.4 Разработка и обоснование выбранной схемы
Для разработки кинематической схемы станка необходимо выбрать ориентацию сверлильной головки (вертикальную, горизонтальную), а также определить, какой из двух элементов станка (сверлильная головка, устройство фиксации книжного блока) будут совершать соответственно вертикальное (горизонтальное) перемещение в процессе сверления отверстий.
В станках с автоматической подачей, как отмечалось в 1.2, перемещается сверлильная головка. В целях упрощения конструкции станка и уменьшения стоимости принимаем конструкцию с неподвижной сверлильной головкой. Одновременное вращение четырех сверл предлагается организовать посредством механического привода. Задача привода равномерно распределить энергию вращения от одного электрического двигателя на четыре вала с зажимными патронами для сверл.
Легкий относительно сверлильной головки механизм фиксации книжного блока (аналог стола) предлагается сделать подвижным и также расположить в горизонтальной плоскости механизма. Такое размещение блока фиксации в сочетании с механизмом скольжения позволит уменьшить усилия на перемещение книжного блока.
Таким образом, в конструкции станка предлагается использовать горизонтальное размещение его основных блоков – сверлильной головки и механизма фиксации (рис. 1.5.1). Это позволит разработать настольный станок с габаритами и весом меньшими, чем приведено в таблице рис. 1.2.1.
При выборе типа привода для перемещения механизма фиксации книжного блока необходимо учесть свойства применяемых полиграфических сверл (рис. 1.4.1). Рабочая поверхность сверла имеет тонкую стенку. Несмотря на специальные свойства материалов, из которых изготовляются сверла и их специальную обработку, резкие ударные осевые нагрузки на него, а также изгибы могут привести к поломке сверла и ускоряют износ.
рис. 1.4.1
Эти требования можно выполнить в случае плавного нарастания скорости перемещения книжного блока с жестким допуском на осевые отклонения в процессе сверления. Так же желательно плавное торможение книжного блока при возвратном движении.
Выполнить эти требования с использованием электропривода сложно. Инерционность электропривода снижает его быстродействие. Для достижения плавности перемещения потребуются специальные электродвигатели и электронные схемы управления движением. Для выполнения поставленной задачи перемещения книжного блока предлагается использовать энергию сжатого воздуха.
Пневматические устройства начали применять еще в глубокой древности (ветряные двигатели, музыкальные инструменты, кузнечные меха и пр.). Широкое распространение они получили вследствие создания надежных источников пневматической энергии - нагнетателей, способных придавать газам необходимый запас потенциальной и (или) кинетической энергии. В нашем случае использование сжатого воздуха позволит сконструировать пневматический привод. Основные достоинства пневматического привода в сравнении с электроприводом следующие:
- простота конструкции и технического обслуживания;
- пожаро- и взрывобезопасность;
- надежность работы в широком диапазоне температур;
- значительно больший срок службы, чем электропривода;
- высокое быстродействие;
- наличие демпфирующего эффекта, которым обладает воздух.
Благодаря перечисленным достоинствам пневмоприводы нашли широкое применение в современном производстве. Более 70% всех общемировых автоматизированных систем по сборке и упаковке продукции реализованы на базе пневматических устройств таких, как, распределители, позиционеры и пневмоцилиндры. Многие фирмы-производители, такие как FESTO (международный концерн со штабом в Германии), SMC Corporation (Япония), CAMOZZI (Италия), разработали и выпускают типовые элементы для конструирования пневмоприводов различного применения. К таким элементам относятся пневмоцилиндры разных конструкций, демпфирующие дроссели, бесконтактные магнитные датчики перемещения, системы подготовки воздуха, клапаны и др.