Тольяттинский Государственный Университет
Кафедра “Технология машиностроения”
Курсовая работа
по дисциплине
“Математическое моделирование"
Студент: Комарова И.О.
Группа: М-401
Преподаватель: Бобровский А.В.
Тольятти, 2005
Обработка детали ведется на вертикально-фрезерном станке 6Р12 концевой фрезой с цилиндрическим хвостовиком ГОСТ 17025-71.
Диаметр фрезы D = 20 мм; количество зубьев z = 6; материал инструмента Р6М5; период стойкости инструмента [Т] = 80 мин; глубина фрезерования t = 20 мм; ширина фрезерования В = 20 мм; рабочий ход Lрх = 70 мм; материал заготовки ШХ15; длина заготовки L = 60 мм; шероховатость поверхности Ra6,3; частота вращения шпинделя станка n = 31,5…1600 об/мин; скорость продольных подач Sпр = 25…1250 мм/мин; мощность электродвигателя Nэ = 7,5 кВт.
Необходимо оптимизировать процесс резания с учетом следующих ограничений:
1) ограничение по кинематике станка;
2) ограничение по периоду стойкости инструмента;
3) ограничение по мощности привода главного движения станка.
Эскиз обработки:
1. Графический метод
1) ограничение по кинематике станка
а)
; ; ; ;б)
; ; ;2) ограничение по периоду стойкости инструмента
; ; ; ; ; ; ; .3) ограничение по мощности главного движения станка
; ; ; ; ; ; ;Выпишем все ограничения, а затем внесем их на один график.
Критерий оптимальности - целевая функция:
Придаем любое значение z и строим две прямые, касающиеся области оптимальных режимов резания в двух крайних ее точках. Таким образом, мы нашли точки А и В.
Найдем координаты точки А. Для этого необходимо решить систему уравнений:
; ;Подставим координаты точки А в уравнение целевой функции:
Найдем координаты точки В. Для этого необходимо решить систему уравнений:
; ;Подставим координаты точки В в уравнение целевой функции:
Сравним значения целевой функции для точек А и В:
Значит, оптимальной точкой резания является точка А (0,296; - 0,494).
Определим оптимальные значения режимов резания:
V= 10x1 = 100,296 = 1,977 м/мин;
Sz= 10x2 = 10-0,494 = 0,321 мм/зуб;
об/мин; мм/мин.2. Симплекс-метод
Решить систему уравнений:
Найти значения, при которых целевая функция
.Приведем все знаки к одному направлению:
Для перехода от системы неравенств, вводим в систему уравнений единичную матрицу. Расширенная форма записи:
; .Находим расширенную матрицу, матрицу свободных членов и матрицу коэффициентов при базисных переменных:
.Выбираем исходный базис. Запишем матрицу коэффициентов при базисных переменных:
Найдем определитель матрицы коэффициентов при базисных переменных:
Находим союзную матрицу:
; | ; | ; |
; | ; | ; |
; | ; | . |