2.4 Отпуск
Отпуск проводится с целью снятия термических напряжений, повышения твёрдости, прочности и износостойкости. Нагрев проводят медленный для
сложных изделий до температуры 150° – 300°С для деталей работающих на износ или 400° – 600°С, затем дают выдержку 1 – 3 часа. Охлаждение проводят на воздухе [3].
3. Технология термической обработки цветных металлов.
3.1Алюминий и его сплавы
подвергают различным видам термической обработки в зависимости от состава сплавов, вида полуфабрикатов, деталей и заготовок, а также их назначения. В алюминии нет полиморфного и мартенситного превращений. Поэтому для алюминиевых сплавов виды термической обработки, связанные с этими превращениями, исключены.
Отличительная особенность алюминия заключается в его высокой теплопроводности, поэтому проблема прокаливаемости имеет важного значения. Склонность алюминия и его сплавов к взаимодействию с газами, составляющими атмосферу печи, невелика. Поэтому не возникало особой необходимости.
Наибольшее распространение для алюминиевых сплавов получили три вида термической обработки: отжиг, закалка и старение.
Отжиг. Отжиг алюминиевых сплавов применяют в том случае, когда необходимо ликвидировать нежелательные последствия, связанные с неравновесностью структуры. Наиболее часто при неравновесной структуре наблюдается пониженная пластичность, низкая коррозионная стойкость и недостаточная деформационная способность. Применительно к алюминиевым сплавам наиболее распространены следующие ее разновидности:
1. Неравновесное состояние, свойственное литым сплавам. При получении слитков и отливок скорости охлаждения достаточно высоки, и поэтому кристаллизация протекает в неравновесных условиях, что приводит к явлениям дендритной ликвации компонентов сплава. При этом легирующие компоненты в примеси распределяются неравномерно по объему литых зерен, а на границах появляются неравновесные интерметаллические фазы. Такой характер структуры обусловливает низкую технологическую пластичность сплавов и малую коррозионную стойкость.
2. Неравновесное состояние, вызванное пластической деформацией, при которой происходят существенные структурные изменения, часть энергии деформации поглощается, и свободна" энергия системы повышается.
3. Неравновесное состояние, являющееся результатом предыдущей термической обработки. Основная особенность такого состояния — присутствие в сплаве более или менее пересышеного легирующими компонентами твердого раствора на основе алюминия.
4. Неравновесное состояние, вызванное остаточными напряжениями в объеме металла.
При отжиге, основными параметрами которого являются температура и скорость нагрева, а также продолжительность выдержки при заданной температуре, все рассмотренные выше отклонения от равновесного состояния могут быть устранены. При этом пластичность сплавов всегда возрастает.
Для алюминиевых сплавов применяют следующие виды отжига: гомогенизационный отжиг, рекристаллизационный отжиг деформированных полуфабрикатов, отжиг термически упрочненных сплавов для разупрочнения и отжиг для снятия остаточных напряжений [1].
Закалка. Сущность процесса состоит в нагреве сплавов до температур, достаточных для растворения низкотемпературных фаз, выдержке при этих температурах и охлаждении со скоростями, обеспечивающими отсутствие процессов распада.
Температуру нагрева под закалку выбирают в зависимости от природы сплава. Так как растворение неравновесных фазовых процессов - диффузионный, то температура закалки должна быть возможности высокой. Она не может превышать темпера неравновесного солидуса сплавов из-за возникновения пережога, резко снижающего механические свойства. Продолжительность выдержки при температуре нагрева под закалку определяется скоростью растворения легирующих элементов, входящих в избыточные фазы, и зависит от природы сплава, его структурного состояния и условий нагрева. Скорости охлаждения при закалке должны обеспечивать фиксацию в твердом растворе концентраций легирующих компонентов, свойственных высоким температурам. При выборе охлаждающей среды необходимо принимать во внимание и толщину изделий [1].
Старение. Старение применяют для повышения прочностных характеристик алюминиевых сплавов. Для этого можно использовать естественное и искусственное старение.
Изменения структуры и свойств определяются разными механизмами распада в зависимости от температуры и времени старения. При низких температурах или коротких временах выдержки упрочнение связано с образованием зон Гинье —Престона (ГП) (рис.6) [1].
Рис.6 Схема зоны Гинье—Престона (по Герольду): белые кружки — атомы алюминия; черные — атомы меди
Этот вид старения, являющийся основным для сплавов типа дуралюмина, называют зонным старением. С увеличением температуры старения или времени выдержки может проявиться другой механизм упрочнения, когда оно достигается вследствие выделения из твердого раствора метастабильных фаз, которые имеют с матрицей когерентные или полукогерентные границы. Такое старение, протекающее обычно при повышенных температурах, называют фазовым старением:
Дальнейшее увеличение времени старения приводит к тому, что образуются выделения стабильных фаз, имеющие с матрицей некогерентные границы. Коагуляция этих фаз разупрочняет сплавы, и соответствующий вид старения называют коагуляционным старением.
Возврат при старении. Этот вид термической обработки применяют к закаленным и естественно состаренным алюминиевым сплавам. Сущность этого вида термообработки сводится к следующему. Если естественно состаренный сплав алюминия нагреть на очень короткий промежуток времени до температур, превышающих линию сольвуса для зон Гинье — Престона, то зоны растворяются, а процессы фазового старения еще не успевают протекать. При последующем быстром охлаждении структура и свойства сплава соответствуют свежезакаленному состоянию [1].
3.2 Титан и его сплавы
Титан серебристо-белый легкий металл с плотностью 4,5 г/см³. Температура плавления титана зависит от степени чистоты и находится в пределах 1660…1680°С.
Чистый иодидный титан, в котором сумма примесей составляют 0,05…0,1 %, имеет модуль упругости 112 000 МПа, предел прочности около 300 МПа, относительное удлинение 65%. Наличие примесей сильно влияет на свойства. Для технического титана ВТ1, с суммарным содержанием примесей 0,8 %, предел прочности составляет 650 МПа, а относительное удлинение – 20 %.
При температуре 882°С титан претерпевает полиморфное превращение, титан с гексагональной решеткой переходит в – титан с объемно-центрированной кубической решеткой. Наличие полиморфизма у титана создает предпосылки для улучшения свойств титановых сплавов с помощью термической обработки.
Титан имеет низкую теплопроводность. При нормальной температуре обладает высокой коррозионной стойкостью в атмосфере, в воде, в органических и неорганических кислотах (не стоек в плавиковой, крепких серной и азотной кислотах), благодаря тому, что на воздухе быстро покрывается защитной пленкой плотных оксидов. При нагреве выше 500°С становится очень активным элементом. Он либо растворяет почти все соприкасающиеся и ним вещества, либо образует с ними химические соединения.
Титановые сплавы имеют ряд преимуществ по сравнению с другими:
-сочетание высокой прочности(
МПа)с хорошей пластичностью ;-малая плотность, обеспечивающая высокую удельную прочность;
- хорошая жаропрочность, до 600…700°С;
- высокая коррозионная стойкость в агрессивных средах.
Однородные титановые сплавы, не подверженные старению, используют в криогенных установках до гелиевых температур [1].
3.3 Магний и его сплавы
Магний – очень легкий металл, его плотность – 1,74 г/см³. Температура плавления – 650°С. Магний имеет гексагональную плотноупакованную кристаллическую решетку. Очень активен химически, вплоть до самовозгорания на воздухе. Механические свойства технически чистого магния (Мг1): предел прочности – 190 МПа, относительное удлинение – 18 %, модуль упругости – 4500 МПа. Основными магниевыми сплавами являются сплавы магния с алюминием, цинком, марганцем, цирконием. Сплавы делятся на деформируемые и литейные. Сплавы упрочняются после закалки и искусственного старения. Закалку проводят от температуры 380…420°С, старение при температуре 260…300°С в течение 10…24 часов. Особенностью является длительная выдержка под закалку – 4…24 часа [5].
3.4 Медь и ее сплавы
Медь имеет гранецентрированную кубическую решетку. Плотность меди 8,94 г/см³, температура плавления 1083°С. Характерным свойством меди является ее высокая электропроводность, поэтому она находит широкое применение в электротехнике. Технически чистая медь маркируется: М00 (99,99 % Cu), М0 (99,95 % Cu), М2, М3 и М4 (99 % Cu). Механические свойства меди относительно низкие: предел прочности составляет 150…200 МПа, относительное удлинение – 15…25 %. Поэтому в качестве конструкционного материала медь применяется редко. Повышение механических свойств достигается созданием различных сплавов на основе меди. Различают две группы медных сплавов: латуни – сплавы меди с цинком, бронзы – сплавы меди с другими (кроме цинка) элементами [5].