Смекни!
smekni.com

Разработка системы автоматизированного управления дозатором технологических растворов (стр. 2 из 13)

1.1 Объёмные дозаторы

Применяют для дозирования газов, жидкостей, паст, реже твёрдых сыпучих материалов. Дозы от долей кубических сантиметров до сотен (тысяч для газов) кубических метров, производительность от сантиметров кубических в час до тысяч метров кубических в час (для газов десятков тысяч), погрешность от 0,5 до 10-20 %.

Эти дозаторы просты по конструкции, достаточно надёжны.

Недостатки: зависимость объёма дозы, от температуры и давления (особенно для газов), значительная погрешность при дозировании пенящихся сред. Дозаторы дискретного действия в простейшем случае состоят из одной калиброванной ёмкости, снабжённой датчиком уровня, двух клапанов на входе в ёмкость и выходе из неё (для повышения точности и производительности дозаторы могут иметь несколько разных по объёму ёмкостей) и блока управления – двухпозиционного автоматического регулятора. Погрешность до 1,5 %. Сравнительно низкую погрешность и габариты имеют дозаторы дискретного действия на основе объёмных счётчиков продукта (роторы – лопастные, с овальными шестернями, винтовые и др.). Угол поворота ротора, соответствующий объёму прошедшего продукта, преобразуется в сигнал, поступающий в блок управления, который вычисляет общий объем прошедшего продукта, сравнивает его с заданием и формирует сигнал на прекращение подачи продукта.

1.2 Весовые дозаторы

Применяют для дозирования твёрдых сыпучих материалов, реже – жидкостей. Дозы от нескольких грамм до сотен килограмм, производительность от сотен до десятков т/ч, погрешность дозирования от 0,1 до 0,5 %. Из дозаторов дискретного действия бывают такие, в которых загружаемая ёмкость установлена на силоизмерительных преобразователях – тензометрических или платформенных весах. В открытых ёмкостях с жидкостями массу продукта при дозировании определяют по пропорциональной ей высоте слоя жидкости.

В некоторых, не отличающихся точностью дозаторах непрерывного действия, регулируется скорость потока материала или площадь поперечного сечения его слоя. Дозируемый материал поступает на силоизмерительный транспортер. Вес материала на ленте, как полагают, пропорционален производительности. Дозируемый материал поступает на силоизмерительный транспортер через питатель. Сигналы задания и расхода подаются в регулятор, который вырабатывает корректирующий сигнал на привод питателя, увеличивая или уменьшая скорость потока материала. Регулирование потока материала можно осуществлять также изменением скорости движения самого весоизмерительного транспортера.

Существуют лотковые весовые дозаторы непрерывного действия. Их отличие от ленточных дозаторов заключается в том, что сыпучий материал из питателя подаётся на неподвижный лоток, закреплённый на тензометрическом датчике. Преимущества такого дозатора в меньших габаритах и в отсутствии двигателя в конструкции лоткового расходомера

1.3 Двухканальное дозирующее устройство

Двухканальное дозирующее устройство состоит из двух идентичных каналов. Структурная схема канала показана на рисунке 1.1.


Рисунок 1.1 – Структурная схема одного канала дозирующего устройства

Канал дозирующего устройства включает в себя:

– расходную емкость;

– весовую емкость;

– тензометрический датчик веса емкости;

– электромагнитный клапан для раствора;

– электромагнитный клапан для воздуха;

– линии растворов и монтажные элементы;

– датчик температуры (общий для двух каналов).

1.3.1 Работа дозирующего устройства

Устройством осуществляется порционное дозирование раствора из весовой емкости, которая с помощью тяги подвешена на тензометрическом датчике. Полиэтиленовые линии для раствора и воздуха, соединяющие весовую емкость с монтажными элементами, выполнены в виде пружинящих спиралей и практически не влияют на результаты измерений веса емкости. В зависимости от величины заданного расхода и измеренного веса емкости по командам контроллера периодически открывается электромагнитный клапан для раствора и в аппарат поступает очередная порция раствора. Когда количество раствора в весовой емкости станет меньше заданного нижнего предела, откроется электромагнитный клапан для воздуха, в расходной емкости будет создано избыточное давление, и раствор начнет поступать из расходной в весовую емкость. После того, как количество раствора в весовой емкости увеличится до заданного верхнего предела, электромагнитный клапан для воздуха выключится, давление воздуха в расходной емкости сравняется со сдувкой, раствор перестанет поступать в весовую емкость.

1.3.2 Недостатки

Данное устройство осуществляет порционное дозирование, а по тех. заданию необходимо непрерывное дозирование по каплям.

Главная проблема данного дозатора в том, что чувствительным элементом являются тензометрические датчики, которые очень чувствительны к вибрациям. А в цеху, где большая вибрация эти датчики дают большую погрешность и быстро выходят из строя. Поэтому данный тип дозатора не может применяться по данному тех. заданию.

1.4 Пневматический дозатор исходного раствора

Технологическая схема дозатора показана на рисунке 1.2.

Рисунок 1.2 – Схема дозатора технологического раствора

Дозатор включает в себя две измерительные емкости А1 и А2 (Н=350 мм, V=215 мл), связанные через гидрозатворы с расходной емкостью А0 (Н=350 мл, V=17 л). Последняя расположена на той же высоте, что и измерительные. Каждая измерительная емкость снабжена донной линией для выдачи раствора. В верхней части донной линии установлен кондуктометрический бесконтактный измеритель уровня и сливной патрубок. Все емкости, измерители уровня и линии, в т.ч. линии гидрозатвора, помещены в общую нагреваемую «рубашку». Давление воздуха в измерительных емкостях изменяется с помощью трех регуляторов давления. В состав одного регулятора давления входят два трехходовых клапана: один на избыточное давление (плюс 30 кПа), другой на разрежение (минус 40 кПа), измерителями являются датчики давления.

1.4.1 Работа дозатора

Первоначально, с помощью разрежения, создаваемого регулятором Р0, либо другим способом заполняется расходная емкость. Контроль заполнения ведется по дискретному уровнемеру (15 сигнализаторов). Величина разрежения не может превышать по абсолютной величине давления, создаваемого столбом жидкости в гидрозатворе. Передача раствора из расходной емкости в измерительную емкость производится при избыточном давление в расходной емкости. Избыточное давление должно превышать по величине сумму давления в принимающей измерительной емкости и давления, создаваемое столбом жидкости высотой (Н1–Н0) или (Н2–Н0), смотрите рисунок 1.2.

Дозирование раствора заключается в поочередных выдаче и приеме раствора измерительными емкостями. Попеременная выдача раствора из измерительных емкостей происходит за счет линейного нарастания давления в дозирующей емкости. Скорость нарастания рассчитывается системой управления исходя из плотности раствора, заданного расхода и площади основания измерительной емкости. Линейное изменение давления до заданной величины осуществляется контроллером регуляторов автономно, только по первоначальной команде пульта оператора, определяющей направление и конечное значение давления – разрежения.

После окончания дозирования из очередной емкости давление в ней снижается плавно, чтобы минимизировать возмущения, вносимые в давление газовой фазы второй емкости. Снижение давления производится до величины 50мм столба раствора, что необходимо для обеспечения процедуры заполнения опорожненной емкости.

1.4.2 Недостатки

Для данного дозатора необходимо точно знать плотность раствора, а измерять ее постоянно затруднительно.

У данного дозатора сложная конструкция и высокая цена, а так как по тех. заданию дозатор не подлежит ремонту и восстановлению, то его применение экономически не выгодно.

Далее рассматривались дозаторы собственной конструкции.

1.5 Дозатор постоянного давления

Схема дозатора представлена на рисунке 1.3

Рисунок 1.3 – Схема дозатора технологического раствора

Суть данного дозатора состоит в том, что путем поддержания постоянного давления, происходит непрерывное дозирование необходимого количества раствора. Так как в трубке и в самой емкости различные давления, то по этой разнице можно рассчитать плотность вещества и ввести поправки в поддерживаемое давление. Все управление отведено контроллеру, человек находится только у пульта управления. Были произведены расчеты, необходимого регулятора давления при наименьшем расходе: