Смекни!
smekni.com

Проектирование производства по получению карбинола метанола (стр. 5 из 17)

Расход состоит из суммирования статей "танковые газы", "продувочные газы", "газ перед сепаратором", "карбинол-сырец".

Определим эффективный фонд рабочего времени

Z=(365-II-B-P)∙24,ч (3.31)

Z=365∙24-160=8600 ч

Часовая производительность цеха:

Находим массовые и мольные расходы всех компонентов реакционной массы по всем статьям:

(3.32)

(3.33)

Пример расчета статьи "карбинол-сырец":

;

(3.34)

Весь остальной расчет выполняется аналогично.

Результаты расчетов сведем в таблицу 3.5.

Таблица 3.5

Материальный баланс синтеза карбинола-сырца

Приход Расход

Статья

кг/ч, 10-3

кмоль/ч, 10-3

Статья

кг/ч, 10-3

кмоль/ч, 10-3

Исходный газ

29390,0

2804,57

Танковые газы

622,9

33,69

Газ перед сепаратором

123146,0

14111.97

Газ перед сепаратором

123146,0

14111.97

Продувочные газы

1957,7

224,32

Карбинол-сырец

17441,9

818,11

Всего

152536,0

16480,59

Всего

143168,5

15188,09

Расхождение составляет 0,06%, что допустимо.

Найдем степени конверсии исходных веществ:



(3,35)

Находим селективности реакций по целевому и побочному продукту:

(3.36)


4. ТЕХНИКО-ТЕХНОЛОГИЧЕСКИЕ РАСЧЕТЫ

4.1. Тепловой расчет


Рис. 4.1 Схема тепловых потоков

Q1-теплота, поступающая с исходной реакционной смесью;

Q2- теплота, поступающая с электрообогревом,

Q2-теплота, уносимая с продуктами реакций;

Q4- потери тепла в окружающую среду;

Q5-теплота химического превращения.

Q5+ Q2+ Q5= Q3-Q4 (4.1)

4.1.1. Теплота, поступающая с исходной реакционной смесью и теплота, уносимая продуктами реакций

Тепловые потоки поступающего сырья и продуктов реакций определяют по формулам:
Qi=Gi∙Ci∙T (4.2)

Qi=Fj∙C° p,i∙T (4.3)

где, Q-тепловой поток, Вт

G-массовый расход, кг/с

Cj-удельная теплоемкость, Дж/кг-К

С°р,i-молярная теплоемкость при постоянном давлении, Дж/моль-К Т-температура, К

Примем температуру парогазовой смеси на входе в реактор180 °С (453 К), температура на выходе 300 °С (573 К). Найдем теплоемкости веществ, входящих и выходящих из реактора при указанных температурах по справочнику [7, с. 73-75]. Полученные данные сведем в таблицу 4.1.

Таблица 4.1

Теплоемкость компонентов реакционной смеси

В-ва Пар-мы

СО2

СО

Н2

СН4

N2

(СНз)2О

СНзОН

С4Н9ОН

Н2О

Т=453К С, Дж/моль∙K •К

44,074

30,043

29,00

44,564

29,814

Т=573К С, Дж/моль∙K •К

46,719

30,619

29,30

51,377

30,327

102,28

75,231

190,64

36,237

По формуле (4.3) найдем теплоту, поступающую с исходной реакционной cмесью:

Qi=453 • (170,02∙103 ∙44,074 + 2099,35∙103∙30,043 + 11752,82∙103∙29,00 + +530,52∙103∙44,564 +1927,88∙103∙29,814) /3600=61974,92∙103 кВт

По формуле (4.3) найдем теплоту, уносимую с продуктами реакций:

Q3=573∙ (133,2∙103∙46,719 + 1583,06∙103∙30,619 + 10493,61∙103∙29,30 + 519,37∙103∙51,377 + 1638,78∙103∙30,327 + 13,32∙103∙102,28 + 498,11∙103∙75,231 + +266,03∙103∙190,64+42,61∙103∙36,237) /3600 =84305,89∙103 кВт

4.1.2. Теплота химического превращения

Теплота химического превращения состоит из теплоты основных и побочных химических реакций. Теплота химической реакции рассчитывается по закону Гесса:


(4.4)

CO + 2H2 CH3OH + 90,73 кДж/моль


2СО + 4H2 (CH3)2O +H2O - 322,0 кДж/моль

CO + 3H2 CH4 + H2O + 257,0 кДж/моль

4СО + 8H2 C4H9OH + 3H2O + 568,60 кДж/моль

CO2 + H2 CO + H2O + 41,2 кДж/моль

Q5=(-12553,76+1191,4 – 795,99 – 42017,96 – 487,64)∙103=-54663,95∙103 кВт

4.1.3. Потери тепла в окружающую среду

По таблице 2.4. [8, с.28] выбираем в качестве теплоизоляции маты минераловатные марки 75. Коэффициент теплопередачи для этой изоляции:

λиз=0,043+0,00022·tср, Вт/м∙град (4.5)

αиз=12,6 Вт/м2∙град [8, c.54]


Температура изолируемой стенки 200 °С.

λиз=0,045+0,0002·130=0,071 Вт/м·град

Толщину изоляции определяем по следующей формуле:

(4.6)

где tст- температура стенки, °С;

tn = 40-45 °С - температура на поверхности изоляции;


t0= (-10,8 + 16,6)/2 =13,7 °С- среднегодовая температура окружающего воздуха для г.Щекино Тульской области.

Теплопотери через изоляцию составят:

(4.7)

где dиз - диаметр (наружный) с изоляцией для реактора без рубашки, м;


dн - наружный диаметр без изоляции, м.

Q4=qиз∙F, (4.8)

где F=0,9 ∙π ∙D ∙Н=0,9 ∙3,14 ∙3,8 ∙16,345 =175,6 м2. Q4 =13991,72 ∙175,6 =2,46∙103 кВт

4.1.4. Тепло, поступающее в реактор с электрообогревом

Q2=Q3+Q4-Q1-Q5 (4.9)

Q2= (84305,89 +2,46 - 61974,92 +54663,95) ∙103 =76997,34∙103 кВт

Таблица 4.2

Тепловой баланс

Приход Расход

Статья

Количество теплоты, кВт 10-3

Статья

Количество теплоты, кВт 10 -3

Q1

61974,92

Q3

84305,89

Q2

76997,34

Q4

2,46

Q5

- 54663,95

Всего

84308,35

Всего

84308,35

4.2. Механический расчет реактора