Смекни!
smekni.com

Анализ и оптимизация технологического режима работы добывающей скважины 115 Кыртаельского место (стр. 1 из 3)

Курсовой проект

Анализ и оптимизация технологического режима работы добывающей скважины № 115 Кыртаельского месторождения


Содержание

1. Геолого-физическая характеристика продуктивных пластов Кыртаельского месторождения

2. Технологическая часть

2.1 Анализ состояния скважины

2.2 Расчет процесса освоения скважины

2.3 Расчет условий фонтанирования скважины при начальных и текущих условиях

2.4 Расчет и распределение давления в эксплуатационной колонне и НКТ при текущих условиях эксплуатации скважины

2.5 Техническое обоснование способа эксплуатации скважины и выбор скважинного оборудования и режима его работы

Заключение

Список использованной литературы


1. Геолого-физическая характеристика продуктивных пластов Кыртаельского месторождения

Параметры Ед. Пласты
п/п измер. D3 dzr D2 st D2 ef2
1 2 3 4 5 6
1 Средняя глубина залегания м 2754
2 Тип залежи Пластовый, тектонически экранированный Массивный сводовый, стратиграфически и тектонически экранированный Пластовый сводовый, тектонически экраниро-ванный
3 Тип коллектора Поровый
4 Площадь нефтегазоносности тыс.м3 30753 34605 38352
5 Средняя общая толщина м 51 142 135
6 Средняя газонасыщенная толщина м 8,5-12,7 11,8* -
7 Средняя нефтенасыщенная толщина м 4,1-9,1 31,3* 16,5-18,2
8 Средняя водонасыщенная толщина м 13,5 53,4 11,2
9 Пористость % 9-13 10 8-13
10 Средняя нефтенасыщенность ЧНЗ доли ед. 0,82-0,85 0,9* 0,72-0,95
11 Средняя нефтенасыщенность ВНЗ доли ед.
12 Средняя нефтенасыщенность газовой шапки доли ед. - 0,06 -
13 Средняя насыщенность газом газовой шапки доли ед. 0,78-0,87 0,85 -
14 Проницаемость по керну мкм2 0,004-0,039 0,046 0,002-0,112
по ГДИ мкм2
по ГИС мкм2
15 Коэффициент песчанистости доли ед. 0,512-0,692 0,68* 0,205-0,218
16 Коэффициент расчлененности доли ед. 5-6 12-15 5-8
17 Начальная пластовая температура оС 55 55 62
18 Начальное пластовое давление МПа 27,17-27,47 27,4 28,81-29,4
19 Вязкость нефти в пластовых условиях мПа*с - 0,83-1,3 -
20 Плотность нефти в пластовых условиях т/м3 0,669
21 Плотность нефти в повехностных условиях т/м3 0,841 0,835 0,822-0,830
22 Абсолютная отметка ВНК м -2492
23 Объемный коэффициент нефти доли ед. 1,541 1,518 1,236**
24 Содержание серы в нефти %
25 Содержание парафина в нефти %
26 Давление насыщения нефти газом МПа - 27,4 11,65**
27 Газосодержание м3 231,4* 231,4 87,1**
28 Содержание стабильного конденсата г/м3 225,8
29 Вязкость воды в пластовых условиях мПа*с - 0,7 -
30 Плотность воды в пластовых условиях т/м3 - 1,1 -
31 Средняя продуктивность *10м3/(сут*МПа)
32 Начальные балансовые запасы нефти тыс.т 5579 48167 18127
в т.ч.: по категориям А+В+С1 тыс.т 157 40324 7091
С2 тыс.т 5422 7843 11036
33 Коэффициент нефтеизвлечения доли ед. 0,180 0,355 0,200
в т.ч.: по категориям А+В+С1 доли ед. 0,350 0,355 0,200
С2 доли ед. 0,175 0,355 0,200
34 Начальные извлекаемые запасы нефти тыс.т 1004 17099 3627
в т.ч.: по категориям А+В+С1 тыс.т 55 14315 1419
С2 тыс.т 949 2784 2208
35 Начальные балансовые запасы газа млн.м3
в т.ч.: по категориям А+В+С1 млн.м3
С2 млн.м3
36 Начальные балансовые запасы конденсата тыс.т
37 Коэффициент извлечения конденсата доли ед.

2. Технологическая часть

2.1 Анализ состояния скважины

Для оценки состояния ПЗП определим скин – фактор по методике Ван - Эвердинга и Херста.

Таблица 1.1 Исходные данные:

№ п/п Обозначение
1 Дебит скважины q 81
2 Вязкость нефти м 0,00107
3 Мощность пласта h 41,3
4 Пористость m 0,1
5 Сжимаемость нефти вн 15,03*10-10
6 Сжимаемость породы вп 1*10-10
7 Радиус скважины rc 0,13

Переведем КВД в координаты ∆P и Ln(t) :

∆P, МПа LgT
0 0
2,7 7,2
3,7 7,9
4,7 8,6
5 9,0
5,2 10,0
5,2 10,5

где

уклон прямолинейного участка

Отрицательное значение скин-фактора указывает на улучшенное состояние ПЗП.

2.2 Освоение скважины

Таблица 2.1 Исходные данные:

№ п/п Обозначение
1 Пластовое давление, МПа Pпл 18,94
2 Глубина скважины, м Н 2652
3 Внутренний диаметр НКТ, м dнктв 0,062
4 Внутренний диаметр эксплуатационной колонны, м dэкв 0,13
5 Плотность жидкости глушения, кг/м3 rгл 1100
6 Плотность нефти дегазированной, кг/м3 rнд 883
7 Вязкость нефти дегазированной, мПа·с mнд 2,84

Расход жидкости агрегата УНЦ-1-160´32к:

на первой передаче qI = 0.0032 м3

на четвёртой передаче qIV = 0.0102 м3

Решение:

Освоение скважины – комплекс технологических и организационных мероприятий, направленных на перевод простаивающей по той или иной причине скважины в разряд действующих. Основной целью вызова притока и освоения является снижение противодавления на забое скважины, заполненной специальной жидкостью глушения, и искусственное восстановление или улучшение фильтрационных характеристик призабойной зоны для получения соответствующего дебита или приемистости. Принять, что для освоения требуемое забойное давление равно 0,75*Рпл.

В качестве жидкости глушения используем глинистый раствор плотностью rгл = 1200 кг/м3, в качестве жидкости замещения дегазированную нефть плотностью rнд = 870 кг/м3данной залежи. Проектирование процесса освоения скважины методом замены жидкости на нефть (без поглощения её пластом) заключается в расчёте давления закачки (Рзак), объёма закачиваемой жидкости (Vзак) и продолжительности закачки (Тзак).

Закачка жидкости замещения производится насосным агрегатом УНЦ - 1-160´32к. Данный агрегат имеет четыре передачи, отличающиеся напорами и расходами жидкости и необходимо для каждой передачи найти потери напора на трение, чтобы установить режим закачки. В данном случае потери напора рассчитываются для двух режимов – на первой передаче (расход qI = 0.0032 м3/с) и на четвёртой передаче (расход qIV = 0.0102 м3/с).

Для оценки пластической вязкости глинистого раствора (hгл) и его предельного напряжения сдвига (tгл) используются формулы Б.Е. Филатова

Находим критическую скорость движения глинистого раствора в трубе Wкрт


Фактическую среднюю скорость движения глинистого раствора в НКТ при различных режимах закачки находим по следующей формуле:

на первой передаче:

на четвертой передаче:

Потери давления на трение при движении глинистого раствора по трубам определяются по формуле

где Hнкт0 = Hскв-10 м;

Для жидкости замещения в этом случае