Курсовой проект
Анализ и оптимизация технологического режима работы добывающей скважины № 115 Кыртаельского месторождения
Содержание
1. Геолого-физическая характеристика продуктивных пластов Кыртаельского месторождения
2. Технологическая часть
2.3 Расчет условий фонтанирования скважины при начальных и текущих условиях
2.4 Расчет и распределение давления в эксплуатационной колонне и НКТ при текущих условиях эксплуатации скважины
2.5 Техническое обоснование способа эксплуатации скважины и выбор скважинного оборудования и режима его работы
Заключение
Список использованной литературы
1. Геолого-физическая характеристика продуктивных пластов Кыртаельского месторождения
№ | Параметры | Ед. | Пласты | ||
п/п | измер. | D3 dzr | D2 st | D2 ef2 | |
1 | 2 | 3 | 4 | 5 | 6 |
1 | Средняя глубина залегания | м | 2754 | ||
2 | Тип залежи | Пластовый, тектонически экранированный | Массивный сводовый, стратиграфически и тектонически экранированный | Пластовый сводовый, тектонически экраниро-ванный | |
3 | Тип коллектора | Поровый | |||
4 | Площадь нефтегазоносности | тыс.м3 | 30753 | 34605 | 38352 |
5 | Средняя общая толщина | м | 51 | 142 | 135 |
6 | Средняя газонасыщенная толщина | м | 8,5-12,7 | 11,8* | - |
7 | Средняя нефтенасыщенная толщина | м | 4,1-9,1 | 31,3* | 16,5-18,2 |
8 | Средняя водонасыщенная толщина | м | 13,5 | 53,4 | 11,2 |
9 | Пористость | % | 9-13 | 10 | 8-13 |
10 | Средняя нефтенасыщенность ЧНЗ | доли ед. | 0,82-0,85 | 0,9* | 0,72-0,95 |
11 | Средняя нефтенасыщенность ВНЗ | доли ед. | |||
12 | Средняя нефтенасыщенность газовой шапки | доли ед. | - | 0,06 | - |
13 | Средняя насыщенность газом газовой шапки | доли ед. | 0,78-0,87 | 0,85 | - |
14 | Проницаемость по керну | мкм2 | 0,004-0,039 | 0,046 | 0,002-0,112 |
по ГДИ | мкм2 | ||||
по ГИС | мкм2 | ||||
15 | Коэффициент песчанистости | доли ед. | 0,512-0,692 | 0,68* | 0,205-0,218 |
16 | Коэффициент расчлененности | доли ед. | 5-6 | 12-15 | 5-8 |
17 | Начальная пластовая температура | оС | 55 | 55 | 62 |
18 | Начальное пластовое давление | МПа | 27,17-27,47 | 27,4 | 28,81-29,4 |
19 | Вязкость нефти в пластовых условиях | мПа*с | - | 0,83-1,3 | - |
20 | Плотность нефти в пластовых условиях | т/м3 | 0,669 | ||
21 | Плотность нефти в повехностных условиях | т/м3 | 0,841 | 0,835 | 0,822-0,830 |
22 | Абсолютная отметка ВНК | м | -2492 | ||
23 | Объемный коэффициент нефти | доли ед. | 1,541 | 1,518 | 1,236** |
24 | Содержание серы в нефти | % | |||
25 | Содержание парафина в нефти | % | |||
26 | Давление насыщения нефти газом | МПа | - | 27,4 | 11,65** |
27 | Газосодержание | м3/т | 231,4* | 231,4 | 87,1** |
28 | Содержание стабильного конденсата | г/м3 | 225,8 | ||
29 | Вязкость воды в пластовых условиях | мПа*с | - | 0,7 | - |
30 | Плотность воды в пластовых условиях | т/м3 | - | 1,1 | - |
31 | Средняя продуктивность | *10м3/(сут*МПа) | |||
32 | Начальные балансовые запасы нефти | тыс.т | 5579 | 48167 | 18127 |
в т.ч.: по категориям А+В+С1 | тыс.т | 157 | 40324 | 7091 | |
С2 | тыс.т | 5422 | 7843 | 11036 | |
33 | Коэффициент нефтеизвлечения | доли ед. | 0,180 | 0,355 | 0,200 |
в т.ч.: по категориям А+В+С1 | доли ед. | 0,350 | 0,355 | 0,200 | |
С2 | доли ед. | 0,175 | 0,355 | 0,200 | |
34 | Начальные извлекаемые запасы нефти | тыс.т | 1004 | 17099 | 3627 |
в т.ч.: по категориям А+В+С1 | тыс.т | 55 | 14315 | 1419 | |
С2 | тыс.т | 949 | 2784 | 2208 | |
35 | Начальные балансовые запасы газа | млн.м3 | |||
в т.ч.: по категориям А+В+С1 | млн.м3 | ||||
С2 | млн.м3 | ||||
36 | Начальные балансовые запасы конденсата | тыс.т | |||
37 | Коэффициент извлечения конденсата | доли ед. |
Таблица 1.1 Исходные данные:
№ п/п | Обозначение | ||
1 | Дебит скважины | q | 81 |
2 | Вязкость нефти | м | 0,00107 |
3 | Мощность пласта | h | 41,3 |
4 | Пористость | m | 0,1 |
5 | Сжимаемость нефти | вн | 15,03*10-10 |
6 | Сжимаемость породы | вп | 1*10-10 |
7 | Радиус скважины | rc | 0,13 |
Переведем КВД в координаты ∆P и Ln(t) :
∆P, МПа | LgT |
0 | 0 |
2,7 | 7,2 |
3,7 | 7,9 |
4,7 | 8,6 |
5 | 9,0 |
5,2 | 10,0 |
5,2 | 10,5 |
где
уклон прямолинейного участкаОтрицательное значение скин-фактора указывает на улучшенное состояние ПЗП.
Таблица 2.1 Исходные данные:
№ п/п | Обозначение | ||
1 | Пластовое давление, МПа | Pпл | 18,94 |
2 | Глубина скважины, м | Н | 2652 |
3 | Внутренний диаметр НКТ, м | dнктв | 0,062 |
4 | Внутренний диаметр эксплуатационной колонны, м | dэкв | 0,13 |
5 | Плотность жидкости глушения, кг/м3 | rгл | 1100 |
6 | Плотность нефти дегазированной, кг/м3 | rнд | 883 |
7 | Вязкость нефти дегазированной, мПа·с | mнд | 2,84 |
Расход жидкости агрегата УНЦ-1-160´32к:
на первой передаче qI = 0.0032 м3/с
на четвёртой передаче qIV = 0.0102 м3/с
Решение:
Освоение скважины – комплекс технологических и организационных мероприятий, направленных на перевод простаивающей по той или иной причине скважины в разряд действующих. Основной целью вызова притока и освоения является снижение противодавления на забое скважины, заполненной специальной жидкостью глушения, и искусственное восстановление или улучшение фильтрационных характеристик призабойной зоны для получения соответствующего дебита или приемистости. Принять, что для освоения требуемое забойное давление равно 0,75*Рпл.
В качестве жидкости глушения используем глинистый раствор плотностью rгл = 1200 кг/м3, в качестве жидкости замещения дегазированную нефть плотностью rнд = 870 кг/м3данной залежи. Проектирование процесса освоения скважины методом замены жидкости на нефть (без поглощения её пластом) заключается в расчёте давления закачки (Рзак), объёма закачиваемой жидкости (Vзак) и продолжительности закачки (Тзак).
Закачка жидкости замещения производится насосным агрегатом УНЦ - 1-160´32к. Данный агрегат имеет четыре передачи, отличающиеся напорами и расходами жидкости и необходимо для каждой передачи найти потери напора на трение, чтобы установить режим закачки. В данном случае потери напора рассчитываются для двух режимов – на первой передаче (расход qI = 0.0032 м3/с) и на четвёртой передаче (расход qIV = 0.0102 м3/с).
Для оценки пластической вязкости глинистого раствора (hгл) и его предельного напряжения сдвига (tгл) используются формулы Б.Е. Филатова
Находим критическую скорость движения глинистого раствора в трубе Wкрт
Фактическую среднюю скорость движения глинистого раствора в НКТ при различных режимах закачки находим по следующей формуле:
на первой передаче:
на четвертой передаче:
Потери давления на трение при движении глинистого раствора по трубам определяются по формуле
где Hнкт0 = Hскв-10 м; |
Для жидкости замещения в этом случае