Смекни!
smekni.com

Композиционные материалы 2 (стр. 3 из 3)

Углеродные волокнаПорошок РеПорошок Си

Входной контрольВходной контрольВходной контроль

Напыление на волокноПриготовление смеси

Приготовление смеси

Холодное прессование

Выборочное контроль

закалка отпуск

Выборочный контроль

Готовая продукция

Рисунок 4. Схема технологического процесса изготовления шестерён из материала: железная матрица, хаотично ориентированные углеродные волокна.

6.2. Проектирование и конструирование технологической оснастки.

Существует широкий спектр формообразующих машин (прессы, прокатные ста­ны, установки интрузии, экструзии и вакууммирования). В производственных ус­ловиях для реализации технологического процесса необходимо дополнение их отметкой, как правило, индивидуальной для каждой детали. Разработка техноло­гической оснастки регламентирована и определяется по ССК(Т)Д РФ. На на­чальном этапе проектирования технологической оснастки формообразующего оборудования используется. Коэффициент уплотнения смеси при прессовании:

Кγ = γш / γшнас, где

γш =7882,9 кг/м3 - плотность шестерни; γшнас= 1974 кг/м3-насыпная плотность шихты

Кγ = 3,99

6.2.1. Расчет геометрических размеров пресс - формы.

Расчёт геометрических параметров пресс-формы был так же произведён при помоши программы Student.exe , автор Мальцев И. М.

Примечание: пользуясь данными расчета и базой программы «Сталь» назначаем

марку стали для пуансонов, матрица 8Х3. Ниже приведены сравнительные характеристики сталей 8Х3 и ХВСГФ выполненные с помощью программы сравнения и подбора марок материалов, находящейся на сайте « Марочник стали и сплавов» по адресу: http://www.splav.kharkov.com

7. Практическая часть.

Испытания деталей проводят:

1.На экспериментальных участках, позволяющих испытывать относительно дешевые образцы, сформировать режимы и проводить точные измерения.

2.В натуральных узлах и машинах, позволяющих выполнять испытания в условиях близким к эксплуатационным.

3.Испытания деталей делят на кратковременные и усиленные. В первых фиксируется состояние объекта в данный момент, в последнем контролируется изменение соединений во времени, такие как усталость, изнашивание, коррозия и другие. Эти испытания проводят до разрушения. К кратковременным относят испытания по критериям: начальной точности, прочности, жесткости, вибростойкости

При испытании редукторов, коробок скоростей из них составляют матема­тический замкнутый контур, который подвергается внутреннему нагружению путём деформирования упругого элемента. Испытания по внутренним нагружени-ям имеют следующие достоинства: мощность привода расходуется только на оп­ределение сил трения, т.е. можно испытывать детали мощных машин; потери на трение можно измерить с высокой точностью. Испытания при повышенных тем­пературах проводят с подогревом испытуемых изделий в специальных камерах, для которых в машине должно быть предусмотрено место.

Точность изделий проверяют уникальными инструментами и приборами для измерения длин, углов, некруглостей, шероховатость поверхности, приборами для измерения отдельных деталей — зубчатых колёс, резьбы и т.д.

8. Новизна конструкторских решений.

С целью повышения прочности и ряда других свойств, было произведено

изменение длины волокна.

В таб. 6 приведены изменившиеся свойства, полученные в результате

увеличения длины волокна (от 152 мкм до 250 мкм).

Таблица 6. Сравнение свойств полученного КМ в зависимости от длины волокна

b, мкм НОу, МПа Ккм, МПа
152250 1300 1300 1642,4357 2422,9286

b - длина волокна;

КОу - контактные напряжения;

Мкм - прочность КМ при растяжении.

При увеличении длины волокна контактные напряжения остались без изме­нения, но повысилось значение прочности КМ при растяжении, что приводит к повышению эксплуатационных свойств изделия.

Увеличение длины волокна дало возможность значительно сократить эко­номические затраты на производство изделия, т.к. чем длиннее волокно, тем меньше его стоимость.

Варьирование длины армирующего волокна от 152 до 250 мкм позволяет получать КМ с различными прочностными характеристиками.

9. Заключение

Разработка изделий из композиционных материалов связана не только с формообразованием и тепловой обработкой, но и с формированием его структуры и физико-механических характеристик выполненных на стадии проектирования

КМ. Таким образом, создание деталей из КМ — наглядный пример воплощения триединства материала, конструкции и технологии. Поскольку в процессах про­ектирования и изготовления предусматривается обеспечение основных свойств материала изделия. Наибольшая эффективность при использовании КМ достигается при решении задач сохранения металлоёмкости, исключения тепловых операций, повышения характеристик долговечности и надёжности (удельной прочности), снижения веса конструкции и повышения технологической производительности в сочетании с гибкостью и универсальностью

10. Список используемой литературы.

1. Порошковая металлургия. Материалы, технология, свойства, область примене­ния :Справочник / Федорченко И.М., Францевич И.Н / Киев: Наукова думка, 1985 г. Карлшгос Д.М. Композиционные материалы: Справочник Киев: Наукова думка, 1985 г.

2. Проектирование литературы, свойств и технологии порошковых и
композиционных материалов: методическое указание по курсовому проекту для
студентов специальности 1208 НГТУ, Мальцев И. М. Шоткин Ю. А. - Н.
Новгород, 1994 г.

3. Белов С В . Пористые материалы в машиностроении - М.: Машиностроение,
1987г.

4. Сейфулин Р. С. Физикохимия неорганических полимерных и композиционных
материалов.

5. Радомысельский И. Д. Пресс-формы порошковой металлургии. Расчёт и
конструирование. Киев: Техника, 1970 г.

6. Перельман В. Е. Формование порошковых материалов - М: Машиностроение,
1979г.

7. Либенсон П. А., Панов В. С. Оборудование цехов порошковой металлургии. М.:
Металлургия, 1983г.

8. Интернет сайт., Марочник стали и сплавов., http://www.splav.kharkov.com