Dзаг = (0.965…0.975)Dк . [3] (2)
Длину заготовки при прессовании профилей постоянного сечения в общем случае определяют по формуле [3]
, [3] (3)где lпф – длина готового полуфабриката, мм;
lпр – припуск на длину, мм;
m – кратность профилей в прессовке;
lко – длина концевой обрези, мм;
n – число каналов в матрице;
hпо – высота прессостатка, мм;
Fзаг , Fпф – площади сечения соответственно заготовки и готового полуфабриката с учетом плюсовых допусков, мм2 ;
mр – коэффициент распрессовки.
Ниже приведен расчет параметров слитка (табл. 10).
Таблица 10
Расчет параметров слитка
Параметры | Величина | Единица измерения |
Исходные данные | ||
Плотность прессуемого металла | 2640 | кг/м3 |
Длина готового прутка | 9000 | мм |
Припуск на длину | 20 | мм |
Кратность прутка в длине прессованной заготовки | 1 | |
Длина концевой обрези | 40 | мм |
Число каналов в матрице | 3 | |
Высота пресс-остатка | 40 | мм |
Диаметр слитка | 165 | мм |
Диаметр контейнера | 170 | мм |
Диаметр прутка | 20 | мм |
Положительный допуск на длину слитка | 8 | мм |
Результаты расчета | ||
Площадь сечения контейнера | 22698 | мм2 |
Площадь сечения слитка | 21382 | мм2 |
Площадь сечения пресс-изделия | 314 | мм2 |
Коэффициент распрессовки | 1.062 | мм2 |
Объем пресс-остатка | 907.92 | см3 |
Масса пресс-остатка | 2.442 | кг |
Коэффициент вытяжки | 24.096 | |
Расчетная длина слитка | 441.625 | мм |
Длина слитка | 449.625 | мм |
Масса слитка | 25.381 | кг |
3.2. Определение баланса металла, величины отходов по операциям технологического процесса. Расчет технологической карты
Известны коэффициенты потерь металла на каждой операции в процентах от запуска (табл. 11).
Таблица 11
Коэффициенты потерь металла
Операции | Коэффициент потерь металла в % от запуска |
Прессование | 7.71 |
Разбраковка | 1 |
Правка | 0.50 |
Резка, вырезка образцов | 10.25 |
Тогда суммарный коэффициент потерь металла будет kS = 19.46%.. Отсюда запуск металла равен
З = Q×100%/(100 – kS), [3] (5)
где Q – выпуск металла, тонн/год.
З = 35000тонн/год×100%/(100% – 19.46%) = 4345.667 тонн/год.
Теперь легко определить потери металла и коэффициенты выхода годного для каждой операции. Результаты расчета приведены в табл. 12.
Таблица 12
Потери металла и коэффициенты выхода годного
Операция | Потери металла, тонн/год | Коэффициент выхода годного в процентах |
Прессование | 335.051 | 92.3 |
Разбраковка | 43.457 | 98.9 |
Правка | 21.728 | 99.5 |
Резка, вырезка образцов | 445.431 | 88.7 |
Итого | 845.667 | 80.5 |
Баланс металла равен
Б = Q×100%/KS , [3] (4)
где KS – суммарный коэффициент выхода годного, %.
Б = 3500тонн/год×100%/80.5% = 4347.826 тонн/год.
3.3. Температурно-скоростные условия деформации (прессования)
Характер течения алюминия и его сплавов имеет свои особенности, обусловленные природой и физическими свойствами этих сплавов.
Высокая адгезия прессуемых сплавов к материалу инструмент обусловливает значительные напряжения контактного трения, приближающиеся к величине максимального сдвигающего напряжения. Это вызывает большие различия между величинами сдвиговые деформаций в периферийных и центральных слоях заготовки и приводит к повышению неравномерности деформации.
Относительно невысокие температуры деформации алюминиевых сплавов позволяют обеспечить небольшие перепады температур нагрева заготовки и инструмента. Это в сочетании с высокими теплоемкостью и теплопроводностью прессуемых сплавов позволяет уменьшить градиент температурного поля по сечению и длине заготовки и таким образом снизить неравномерность деформации.
Прессование с рубашкой алюминия и его сплавов не удается, так как приварка металла к стенкам контейнера затрудняет удаление рубашки из контейнера.
Алюминиевые сплавы прессуют большей частью методом прямого истечения без смазки контейнера. Для того чтобы повысить выход годного и обеспечить равномерность свойств пресс-изделий, в некоторых случаях применяют метод обратного истечения, например, при прессовании прутков большого диаметра из круглых слитков.
Налипание металла на иглу и большие напряжения, возникающие в игле при полной прошивке прочных алюминиевых сплавов, а также образование, на внутренней поверхности прошитого слитка межкристаллических разрушений обусловливают необходимость образования полости в слитке предварительным сверлением.
Пластичность АМг6 очень высока. Температурный интервал горячего прессования сплава лежит в широких пределах от 250 до 500 °С. Повышение температуры способствует прилипанию сплава к инструменту и вызывает развитие дефектов поверхности пресс-изделий. Прессование сплавов на основе Al-Mgможно вести с очень большими скоростями (до 25 м/с). Скорость прессования для этой группы сплавов определяется не столько свойствами сплава, сколько техникой прессования и имеющимся оборудованием. Для проведения дальнейших расчетов были приняты скорость истечения, равная 0.047 м/с, и температура заготовки, равная 500°C.
3.4. Определение мощности технологического оборудования, его выбор, описание
Мощность технологического оборудования зависит от энергосиловых параметров процесса.
Наиболее универсальной методикой расчета энергосиловых параметров прессования является методика И.Л. Перлина, которая использует принцип суперпозиции: сила прессования Р является суммой составляющих, каждая из которых учитывает расход мощности на преодоление реактивных сил в определенном месте очага деформации :
P = Rм + Tкр + Tм + Tп , [3]
где Rм – составляющая усилия на преодоление мощности внутренних сил (на собственно деформацию), Н;
Tкр – составляющая усилия на преодоление напряжений трения на стенках контейнера, Н;
Tм – составляющая усилия на преодоление напряжений трения на поверхности матрицы или напряжений среза мертвой зоны, Н;
Tп – составляющая усилия на преодоление напряжений трения на калибрующем пояске матрицы, Н.
В формулу могут быть включены и другие слагаемые, учитывающие иные энергозатраты, например на преодоление противодавления, напряжений трения на поверхности пресс-шайбы и др. Следует отметить, что формулы были получены при использовании условия текучести Треска, при использовании условия текучести Мизеса коэффициенты в формулах могут оказаться несколько иными. Слагаемые формулы И.Л. Перлина находятся в зависимости от конфигурации очага деформации.
При прессовании круглого прутка из круглой заготовки эти слагаемые определяются следующим образом:
Rм = 0.8×Dк2×ssср×i/cos2(a/2); [3] (5)
Tкр = 0.5×p×yк×Dк×ss0×L; [3] (6)
Tм = 0.4×yм×Dк2×ssср×i/sin [3] (7)
Tп = 0.5×yп×d×ssк×l×lп , [3] (8)
где i = lnl - логарифмическая степень деформации;
L = Lср – 0.5×(Dк – d)/tga – длина распрессованного слитка за вычетом жесткой (мертвой) зоны, мм;
Lср = D2×Lc/ Dк2 – длина распрессованного слитка, мм;
Dк , D и Lc – диаметр контейнера, диаметр и длина слитка, мм;
a - угол обжимающей части пластической зоны, °.
Последний угол равен углу естественного истечения металла (60…65°) при полуугле образующей матрицы больше 60…65°, в том числе при плоской матрице, и равен полууглу наклона образующей матрицы к оси прессования, если последний полуугол меньше угла естественного истечения. Примем α = 60°.
Коэффициенты трения yк , yм , yп соответственно на контейнере, матрице и калибрующем пояске являются справочными данными. В случае прессования со смазкой yк = yм = yп = 0.25.
Особую трудность вызывает определение величины сопротивления деформации, поскольку кривые упрочнения при сверхвысоких значениях пенсии деформации, характерных для прессования, до сих пор не построены из-за отсутствия соответствующих методик. В связи с этим пользуются имеющимися зависимостями величины сопротивления деформации ss = ¦(e, x, q), где x – скорость деформации, q – температура, экстраполируя данные в область высоких степеней деформации.
Температурно-скоростные параметры процесса назначают, применяя результаты расчета энергосиловых параметров и тепловых полей с учетом прочности и пластичности металла, а большей частью используя рекомендации, полученные в практике прессования, то есть учитывая, что максимальная скорость истечения АМг6 при прессовании 25 м/с. Указанная скорость не приводит к перегреву металла из-за выделения тепла деформации и в то же время к захолаживанию слитка промышленных размеров и массы.
Из условия постоянства секундных объемов скорости истечения uuможно пересчитать на скорости прессования unпо формуле