Таблица 2.2 – Характеристика бензиновых фракций Девонской нефти
Пределы кипения фракции, °С | Выход на нефть, % масс. | Октановое число без ТЭС | Содержание, % масс. | |||
серы | ароматических углеводородов | нафтеновых углеводородов | парафиновых углеводородов | |||
н.к.-70 | 2,1 | 59 | 0,1 | 1 | 13 | 86 |
70-120 | 4,5 | 51 | 0,18 | 7 | 22 | 71 |
70-140 | 6,8 | 45 | 0,20 | 9 | 27 | 64 |
140-180 | 4,6 | 37 | 0,32 | 12 | 29 | 59 |
н.к.-180 | 13,5 | 40 | 0,19 | 9 | 25 | 66 |
В таблице 2.2 представлены характеристики всех бензиновых фракций, которые получают на современных установках АВТ. В настоящее время при первичной перегонке нефти не выделяют узкие бензиновые фракции, служившие ранее сырьем для производства индивидуальных ароматических углеводородов в процессе каталитического риформинга. На современных установках каталитического риформинга применяются высокоактивные катализаторы при пониженном давлении в реакторах, что обеспечивает высокий выход ароматики (55-65 % на катализат) при работе на сырье широкого фракционного состава, выкипающем в пределах 70-180°С. На установке АВТ в основном получают бензиновые фракции 70-120°С (при выработке реактивного топлива) или 70-180°С (если реактивное топливо не вырабатывают), которые направляют на риформинг для повышения их октанового числа. Фракцию нк-70°С целесообразно использовать для процесса изомеризации и далее как компонент бензина. Фракцию 70-140°С для получения ароматики на установке каталитического риформинга или в смеси с фракцией 140-180°С, для производства высокооктанового компонента автомобильных бензинов. Для всех фракций необходима предварительная гидроочистка.
2.3 Характеристика дизельных фракций и их применение
В таблице 2.3 представлена характеристика дизельных фракций, которые можно вырабатывать на установке АВТ из любой нефти и, в частности, из Девонской. Однако получение на АВТ той или иной дизельной фракции должно быть обоснованным.
Таблица 2.3 – Характеристика дизельных фракций Девонской нефти
Пределы кипения, °С | Выход на нефть, % масс. | Цетано-вое число | Вязкость при 20°С, мм2/с (сСт) | Температура | Содержание серы общей, % масс. | |
помутнения, °С | застывания, °С | |||||
180-230 | 5,9 | - | - | - | минус 50 | 0,78 |
230-360 | 19,0 | 51 | 8,21 | минус 4 | минус 8 | 1,98 |
180-360 | 24,9 | 49 | 6,34 | минус 5 | минус 10 | 1,80 |
Из Девонской нефти получаем дизельные фракции 180-230°С и 230-360°С. Фракция 180-360°С отвечает требованиям стандарта на летнее дизельное топливо. Фракцию 180-230°С можем использовать как компонент зимнего ДТ. Для всех продуктов требуется гидроочистка для понижения содержания серы [4].
2.4 Характеристика вакуумных (масляных) дистиллятов Девонской нефти и их применение
Таблица 2.4 – Характеристика вакуумных дистиллятов Девонской нефти
Пределы кипения, °С | Выход на нефть, % масс. | Плотность при 20°С, кг/м3 | Вязкость, мм2/с, при | Выход базовых масел с ИВ³90 на дистиллят, % масс. | |
50°С | 100°С | ||||
350-430 | 11,19 | 872,3 | 13,91 | 4,82 | - |
430-510 | 10,13 | 886,0 | 45,68 | 8,17 | - |
510-600 | 13,71 | 924,5 | 167,49 | 24,56 | - |
выше 600 | 26,9 | 947,2 | 298,23 | 33,45 | - |
Данные табл. 2.4 показывают нецелесообразность получения узких масляных фракций из Девонской нефти, т.к. получение базовых масел с ИВ≥90 невозможно из-за их отсутствия. Поэтому после выхода из вакуумной колонны и блока теплообменников потоки объединяем и направляем широкую масляную фракцию (ШМФ) на установки каталитического крекинга и (или) гидрокрекинга.
2.5 Характеристика остатков и их применение
Таблица 2.5 – Характеристика остатков Девонской нефти
Показатель | Остатки, tнк °С | ||
выше 350 | выше 500 | выше 600 | |
Выход на нефть, % масс. | 62,0 | 41,9 | 26,9 |
Вязкость условная, °ВУ:при 80°С | 18,84 | 379,00 | - |
при 100°С | 9,63 | 224,28 | 357,80 |
Плотность при 20°С, кг/м3 | 975,2 | 1009,3 | 1163,4 |
Коксуемость, % масс. | 11,06 | 14,51 | 17,40 |
Содержание, % масс.:серы | 3,18 | 3,57 | 4,19 |
парафинов | 2,1 | 0,6 | 0,4 |
На установке АВТ получают остатки: остаток атмосферной перегонки – мазут (tнк~360°С) и остаток вакуумной перегонки – гудрон обычный (tнк~550°С). Мазут поступает на вакуумный блок для производства масляных дистиллятов.
Мазут и гудрон применяются в качестве компонентов котельных топлив и сырья для установок висбрекинга и коксования. Кроме того, гудрон используется в качестве сырья для процесса деасфальтизации и производства битумов, т.к. Девонская нефть отвечает требованиям:
А+С-2,5П=6,15+17,84-2,5·0,5=22,74 > 0,
где А, С, П – содержание асфальтенов, смол и парафинов в нефти соответственно [4].
Остатки Девонской нефти из-за повышенной вязкости (ВУ > 16) могут быть применены в качестве компонентов котельных топлив только после их переработки на установке висбрекинга.
3 Выбор и обоснование технологической схемы установки первичной переработки нефти (АВТ)
3.1 Блок ЭЛОУ
В блоке ЭЛОУ для получения обессоленной нефти с содержанием хлористых солей £1 мг/л при степени обессоливания в каждой ступени 95% устанавливается две ступени обессоливания [13]. Это позволяет довести содержание хлористых солей после первой ступени до 5,95 мг/л, т.к.
119 – 119 × 0,95 = 5,95 мг/л и после второй ступени до ~0,3 мг/л, т.к.
5,95 – 5,95 × 0,95 » 0,3 мг/л.
где 119 – содержание хлористых солей в сырой нефти, мг/л (см.таблицу 2.1).
Концентрация хлористых солей в воде, находящейся в сырой нефти:
Концентрация хлористых солей в воде, находящейся в обессоленной нефти:
где 0,0067 – содержание воды в сырой нефти, масс. доля (0,67%);
0,8895 – относительная плотность нефти;
1 – содержание хлористых солей в обессоленной нефти, мг/л;
0,001 – содержание воды в обессоленной нефти, масс. доля (0,1 % масс.).
Для понижении концентрации хлористых солей в воде подают промывную воду.
Расход промывной воды (В) определяется из уравнения:
Для девонской нефти с учетом вышеуказанных концентраций солей в воде это уравнение имеет вид:
,откуда В=16,85 л/м3 нефти или 1,685 % об. на нефть. Обычно промывную воду подают с избытком 50-200%. В данном случае принимается расход промывной воды 2,0% на нефть.
Для уменьшения неутилизируемых отходов (соленые стоки) свежая промывная вода подается только во вторую ступень обессоливания, а дренажная вода из электродегидраторов второй ступени поступает в электродегидраторы первой ступени через прием сырьевого насоса (3% об.), т.е. применяется циркуляция воды.
Дренажные воды из электродегидраторов сбрасываются в специальную емкость для отстоя, а после отстоя – в канализацию соленых вод и далее на очистные сооружения. Деэмульгатор неионогенного типа подается в количестве 8 г/т нефти в виде 2% водного раствора (400 г/т) на прием сырьевого насоса из специальной емкости. В связи с этим в технологической схеме установки АВТ предусматриваются дополнительные емкости и насосы.
3.2 Блок колонн
3.2.1 Атмосферный блок
В настоящее время наиболее распространены три вида оформления атмосферного блока:
1. с одной сложной ректификационной колонной
2. с предварительным испарителем
3. с отбензинивающей колонной
Рис. 3.1. Атмосферный блок.
Схему 1 применять нецелесообразно. Она рассчитана на переработку стабилизированных нефтей с содержанием бензиновых фракций до 10%(масс.), а в нашем случае – 13,5%(масс.). Переработка нефтей с высоким содержанием растворенного газа и низкокипящих фракций по этой схеме затруднительна, так как повышается давление на питательном насосе до печи, наблюдается нестабильность температурного режима и давления в основной колонне из-за колебаний состава сырья, невозможность конденсации легких бензиновых фракций, насыщенных газообразными компонентами, при низком давлении в воздушных конденсаторах. Повышение же давления в колонне уменьшает четкость фракционирования.
В схеме 2 одновременная ректификация в одной колонне легких и тяжелых фракций снижает температуру печи, но при высоком содержании бензиновых фракций и растворенных газов атмосферная колонна чрезмерно перегружается по парам, что заставляет увеличивать ее диаметр. Все коррозионно-активные вещества попадают вместе с парами из испарителя в колонну, т.е. испаритель не защищает атмосферную колонну от коррозии.
Схема 3 (рис. 3.1.) самая распространенная в отечественной практике. Она наиболее гибка и работоспособна при значительном изменении содержания бензиновых фракций и растворенных газов. Коррозионно-агрессивные вещества удаляются через верх первой колонны, таким образом, основная колонна защищена от коррозии. Благодаря предварительному удалению бензиновых фракций в змеевиках печи и теплообменниках не создается высокого давления, что позволяет устанавливать более дешевое оборудование без усиления его прочности. Но при работе по этой схеме следует нагревать нефть в печи до более высокой температуры, чем при однократном испарении, вследствие раздельного испарения легких и тяжелых фракций. Кроме того, установка оборудована дополнительной аппаратурой.