Смекни!
smekni.com

Установка первичной переработки нефти (стр. 2 из 8)

Таблица 2.2 – Характеристика бензиновых фракций Девонской нефти

Пределы кипения фракции, °С Выход на нефть, % масс. Октановое число без ТЭС Содержание, % масс.
серы ароматических углеводородов нафтеновых углеводородов парафиновых углеводородов
н.к.-70 2,1 59 0,1 1 13 86
70-120 4,5 51 0,18 7 22 71
70-140 6,8 45 0,20 9 27 64
140-180 4,6 37 0,32 12 29 59
н.к.-180 13,5 40 0,19 9 25 66

В таблице 2.2 представлены характеристики всех бензиновых фракций, которые получают на современных установках АВТ. В настоящее время при первичной перегонке нефти не выделяют узкие бензиновые фракции, служившие ранее сырьем для производства индивидуальных ароматических углеводородов в процессе каталитического риформинга. На современных установках каталитического риформинга применяются высокоактивные катализаторы при пониженном давлении в реакторах, что обеспечивает высокий выход ароматики (55-65 % на катализат) при работе на сырье широкого фракционного состава, выкипающем в пределах 70-180°С. На установке АВТ в основном получают бензиновые фракции 70-120°С (при выработке реактивного топлива) или 70-180°С (если реактивное топливо не вырабатывают), которые направляют на риформинг для повышения их октанового числа. Фракцию нк-70°С целесообразно использовать для процесса изомеризации и далее как компонент бензина. Фракцию 70-140°С для получения ароматики на установке каталитического риформинга или в смеси с фракцией 140-180°С, для производства высокооктанового компонента автомобильных бензинов. Для всех фракций необходима предварительная гидроочистка.


2.3 Характеристика дизельных фракций и их применение

В таблице 2.3 представлена характеристика дизельных фракций, которые можно вырабатывать на установке АВТ из любой нефти и, в частности, из Девонской. Однако получение на АВТ той или иной дизельной фракции должно быть обоснованным.

Таблица 2.3 – Характеристика дизельных фракций Девонской нефти

Пределы кипения, °С Выход на нефть, % масс. Цетано-вое число Вязкость при 20°С, мм2/с (сСт) Температура

Содержание серы

общей, % масс.

помутнения, °С застывания, °С
180-230 5,9 - - - минус 50 0,78
230-360 19,0 51 8,21 минус 4 минус 8 1,98
180-360 24,9 49 6,34 минус 5 минус 10 1,80

Из Девонской нефти получаем дизельные фракции 180-230°С и 230-360°С. Фракция 180-360°С отвечает требованиям стандарта на летнее дизельное топливо. Фракцию 180-230°С можем использовать как компонент зимнего ДТ. Для всех продуктов требуется гидроочистка для понижения содержания серы [4].

2.4 Характеристика вакуумных (масляных) дистиллятов Девонской нефти и их применение

Таблица 2.4 – Характеристика вакуумных дистиллятов Девонской нефти

Пределы кипения, °С Выход на нефть, % масс. Плотность при 20°С, кг/м3 Вязкость, мм2/с, при Выход базовых масел с ИВ³90 на дистиллят, % масс.
50°С 100°С
350-430 11,19 872,3 13,91 4,82 -
430-510 10,13 886,0 45,68 8,17 -
510-600 13,71 924,5 167,49 24,56 -
выше 600 26,9 947,2 298,23 33,45 -

Данные табл. 2.4 показывают нецелесообразность получения узких масляных фракций из Девонской нефти, т.к. получение базовых масел с ИВ≥90 невозможно из-за их отсутствия. Поэтому после выхода из вакуумной колонны и блока теплообменников потоки объединяем и направляем широкую масляную фракцию (ШМФ) на установки каталитического крекинга и (или) гидрокрекинга.

2.5 Характеристика остатков и их применение

Таблица 2.5 – Характеристика остатков Девонской нефти

Показатель Остатки, tнк °С
выше 350 выше 500 выше 600
Выход на нефть, % масс. 62,0 41,9 26,9
Вязкость условная, °ВУ:при 80°С

18,84

379,00

-

при 100°С 9,63 224,28 357,80
Плотность при 20°С, кг/м3 975,2 1009,3 1163,4
Коксуемость, % масс. 11,06 14,51 17,40
Содержание, % масс.:серы

3,18

3,57

4,19

парафинов 2,1 0,6 0,4

На установке АВТ получают остатки: остаток атмосферной перегонки – мазут (tнк~360°С) и остаток вакуумной перегонки – гудрон обычный (tнк~550°С). Мазут поступает на вакуумный блок для производства масляных дистиллятов.

Мазут и гудрон применяются в качестве компонентов котельных топлив и сырья для установок висбрекинга и коксования. Кроме того, гудрон используется в качестве сырья для процесса деасфальтизации и производства битумов, т.к. Девонская нефть отвечает требованиям:

А+С-2,5П=6,15+17,84-2,5·0,5=22,74 > 0,

где А, С, П – содержание асфальтенов, смол и парафинов в нефти соответственно [4].

Остатки Девонской нефти из-за повышенной вязкости (ВУ > 16) могут быть применены в качестве компонентов котельных топлив только после их переработки на установке висбрекинга.


3 Выбор и обоснование технологической схемы установки первичной переработки нефти (АВТ)

3.1 Блок ЭЛОУ

В блоке ЭЛОУ для получения обессоленной нефти с содержанием хлористых солей £1 мг/л при степени обессоливания в каждой ступени 95% устанавливается две ступени обессоливания [13]. Это позволяет довести содержание хлористых солей после первой ступени до 5,95 мг/л, т.к.

119 – 119 × 0,95 = 5,95 мг/л и после второй ступени до ~0,3 мг/л, т.к.

5,95 – 5,95 × 0,95 » 0,3 мг/л.

где 119 – содержание хлористых солей в сырой нефти, мг/л (см.таблицу 2.1).

Концентрация хлористых солей в воде, находящейся в сырой нефти:

Концентрация хлористых солей в воде, находящейся в обессоленной нефти:

где 0,0067 – содержание воды в сырой нефти, масс. доля (0,67%);

0,8895 – относительная плотность нефти;

1 – содержание хлористых солей в обессоленной нефти, мг/л;

0,001 – содержание воды в обессоленной нефти, масс. доля (0,1 % масс.).

Для понижении концентрации хлористых солей в воде подают промывную воду.

Расход промывной воды (В) определяется из уравнения:

Для девонской нефти с учетом вышеуказанных концентраций солей в воде это уравнение имеет вид:

,

откуда В=16,85 л/м3 нефти или 1,685 % об. на нефть. Обычно промывную воду подают с избытком 50-200%. В данном случае принимается расход промывной воды 2,0% на нефть.

Для уменьшения неутилизируемых отходов (соленые стоки) свежая промывная вода подается только во вторую ступень обессоливания, а дренажная вода из электродегидраторов второй ступени поступает в электродегидраторы первой ступени через прием сырьевого насоса (3% об.), т.е. применяется циркуляция воды.

Дренажные воды из электродегидраторов сбрасываются в специальную емкость для отстоя, а после отстоя – в канализацию соленых вод и далее на очистные сооружения. Деэмульгатор неионогенного типа подается в количестве 8 г/т нефти в виде 2% водного раствора (400 г/т) на прием сырьевого насоса из специальной емкости. В связи с этим в технологической схеме установки АВТ предусматриваются дополнительные емкости и насосы.

3.2 Блок колонн

3.2.1 Атмосферный блок

В настоящее время наиболее распространены три вида оформления атмосферного блока:

1. с одной сложной ректификационной колонной

2. с предварительным испарителем

3. с отбензинивающей колонной

Рис. 3.1. Атмосферный блок.

Схему 1 применять нецелесообразно. Она рассчитана на переработку стабилизированных нефтей с содержанием бензиновых фракций до 10%(масс.), а в нашем случае – 13,5%(масс.). Переработка нефтей с высоким содержанием растворенного газа и низкокипящих фракций по этой схеме затруднительна, так как повышается давление на питательном насосе до печи, наблюдается нестабильность температурного режима и давления в основной колонне из-за колебаний состава сырья, невозможность конденсации легких бензиновых фракций, насыщенных газообразными компонентами, при низком давлении в воздушных конденсаторах. Повышение же давления в колонне уменьшает четкость фракционирования.

В схеме 2 одновременная ректификация в одной колонне легких и тяжелых фракций снижает температуру печи, но при высоком содержании бензиновых фракций и растворенных газов атмосферная колонна чрезмерно перегружается по парам, что заставляет увеличивать ее диаметр. Все коррозионно-активные вещества попадают вместе с парами из испарителя в колонну, т.е. испаритель не защищает атмосферную колонну от коррозии.

Схема 3 (рис. 3.1.) самая распространенная в отечественной практике. Она наиболее гибка и работоспособна при значительном изменении содержания бензиновых фракций и растворенных газов. Коррозионно-агрессивные вещества удаляются через верх первой колонны, таким образом, основная колонна защищена от коррозии. Благодаря предварительному удалению бензиновых фракций в змеевиках печи и теплообменниках не создается высокого давления, что позволяет устанавливать более дешевое оборудование без усиления его прочности. Но при работе по этой схеме следует нагревать нефть в печи до более высокой температуры, чем при однократном испарении, вследствие раздельного испарения легких и тяжелых фракций. Кроме того, установка оборудована дополнительной аппаратурой.