Лабораторная работа №3 часть 1
Постановка полного факторного эксперимента при исследовании качествашвейных изделий. Определение многофакторных регрессионных моделей I и II порядков при исследовании качества швейныхизделий
Цель работы:
Освоить математические методы планирования полного факторного эксперимента (ПФЭ); научиться определять математические модели I и II порядков при исследовании качества швейных изделий
Содержание работы
1 .Планирование полного факторного эксперимента и обработка результатов.
2. Определение линейной модели ПФЭ.
3. Проверка адекватности уравнения I порядка.
4. Планирование многофакторного эксперимента II порядка.
5. Определение уравнения регрессии II порядка.
6. Проверка адекватности уравнения II порядка.
7. Анализ результатов работы. Формулировка выводов.
Пособия и инструменты: таблицы значений критериев Стьюдента, Фишера; микрокалькулятор.
Вариант №4
Определяли воздухопроницаемость тканей с различными значениями плотности нитей по основе (Х1)(П0=180), и коэффициентом уплотненности (Х2)(С0=0,7) с интервалами изменения соответственно 50 и 0,2. Определить уровни варьирования факторов, построить рабочую матрицу планирования. Провести обработку ПФЭ, найти уравнение регрессии, проверить его адекватность, результаты расчёта представить графически.
Матрица эксперимента
№ опыта | Х0 | Х1 | Х2 | Х1Х2 | Y дм/м ·с |
1234 | ++++ | +-+- | --++ | -++- | 200380150300 |
Общие сведения
Качество швейных изделий зависит от целого ряда факторов (свойства используемых материалов, швейных ниток, качество соединений и др.). Поэтому при исследовании качества швейных изделий решают многофакторную задачу, в которой изучаемое свойство объекта (Y) зависит от нескольких факторов (Х1 , Х2, Х3, Х4 и т.д.).
С той целью проводится полный факторный эксперимент (ПФЭ), в котором реализуются все возможные комбинации рассматриваемых уравнений факторов, а результаты оцениваются с помощью статистического анализа.
Планирование ПФЭ связано с построением линейных моделей вида
где
- значение критерия;bi - линейные коэффициенты;
bij— коэффициенты двойного взаимодействия факторов.
Многофакторный эксперимент представляет собой сложную задачу, поэтому очень часто линейная математическая модель является неадекватной реальному процессу.
В данном случае переходят к планированию второго и более высоких порядков. Уравнение регрессии при этом представляет полином второй или более высокой степени. Так, при планировании второго порядка изучаемый процесс описывается уравнением второго порядка, общий вид которого представлен ниже
Порядок статистической обработки результатов эксперимента при многофакторном планировании соответствует последовательности обработки при однофакторном планировании.
Выполнение работы
1.1. Определение коэффициентов уравнения регрессии.
1.1.1.Свободный член уравнения регрессии определяем по формуле:
где n - число опытов;
- средний результат в каждом опыте.1.1.2.Линейные коэффициенты определяют по формуле:
где хiu - кодированное значение i-го фактора в каждом отдельном опыте.
1.1.3. Коэффициенты парного взаимодействия.
1.2. Оценка значимости коэффициентов уравнения регрессии.
1.2.1 Определение дисперсии результатов эксперимента:
где
– сумма среднеквадратических отклонений результатов эксперимента от среднего значения в каждом определенном опыте;N - повторность опытов.
1.2.2 Определение дисперсии (ошибки) коэффициентов уравнения регрессии по формуле
1.2.3. Определение доверительного интервала для коэффициентов уравнения.
где tT= 3,18-табличное значение критерия Стьюдента для n=4.
После определения доверительного интервала сравниваем его величину с коэффициентами регрессии. Величина доверительного интервала меньше (по модулю) величины коэффициента, следовательно, данный коэффициент уравнения значим и не исключается из уравнения регрессии.
1.3. Составление уравнения регрессии
После оценки значимости коэффициентов студенты составляют уравнение регрессии в виде.
где -
1.4. Проверка адекватности уравнения регрессии
Адекватность полученного уравнения регрессии определяем с помощью критерия Фишера. Для этого рассчитывают значения критерия по уравнению регрессии, подставляя вместо хu кодированное значение каждого фактора в данном опыте. После этого определяют квадраты отклонений между расчетными и экспериментальными значениями
.Результаты заносим в таблицу 1.
Таблица 1.
№ опыта | Результат эксперимента | Расчётное значение | ||
1234 | 200380150300 | 142.5307.5142.5307.5 | -7.57.57.5-7.5 | 56.2556.2556.2556.25 |
После этого определяем дисперсию адекватности по формуле: