Смекни!
smekni.com

принципы и методы отбора образцов проб и выборок при исследовании свойств текстильных материалов (стр. 5 из 5)

где n– повторность опыта;

k - количество факторов.

Тогда расчётное значение критерия Фишера:

Fт = 19,45

Fp > Fт

Определив расчётное значение критерия Фишера и сравнивая его с табличным, определяют адекватность уравнения регрессии изучаемому процессу. Если Fp>FT, то гипотеза об адекватности отвергается, и уравнение регрессии не соответствует реальному процессу, т.е. связь между критерием и факторами нелинейная.

Вывод: В данной лабораторной работе освоили математические методы планирования полного факторного эксперимента (ПФЭ), научились определять математические модели I порядка, при исследовании качества изделий.

Изучив алгоритм выполнения работы и выполнив ее, определили, что адекватность отвергается (Fp>FT) и уравнение регрессии не соответствует реальному процессу, т.е. связь между критериями и факторами нелинейная. Следовательно, уравнение будет иметь степенную зависимость. Переходим к планированию эксперимента высшего порядка.


Лабораторная работа №3 часть 2

Вариант №4

Определяли воздухопроницаемость тканей с различными значениями плотности нитей по основе (Х1)(П0=180), и коэффициентом уплотненности (Х2)(С0=0,7) с интервалами изменения соответственно 50 и 0,2. Определить уровни варьирования факторов, построить рабочую матрицу планирования. Провести обработку ПФЭ, найти уравнение регрессии, проверить его адекватность, результаты расчёта представить графически.

№ опыта Х0 Х1 Х2 Х1Х2 X²11 X²22 Y дм/м ·с
ядро1234 ++++ +-+- --++ -++- ++++ ++++ 200380150300
звёздные5678 ++++ -1,4141,41400 00-1,4141,414 0000 2,02,000 002,02,0 270340180330
центральные910111213 +++++ 00000 00000 00000 00000 00000 190200230180220

2.1. Определение коэффициентов уравнения регрессии

2.1.1 Свободный член уравнения определяем по формуле:

где yu- среднее экспериментальное значение в каждом u-том опыте;

x - кодированное значение уровня k-го фактора в u-том опыте;

k - количество факторов;

а1, а2 - числовые константы, берутся из таблицы.

Число факторов (k) Число опытов Коэффициенты
а1 а2 а3 а4 а5 а6 а7
2 13 0,200 0,100 0,125 0,250 0,125 0,0187 0,100
3 20 0,1663 0,0568 0,0732 0,1250 0,0625 0,0069 0,0568
4 31 0,1428 0,0357 0,0417 0,0625 0,0312 0,0037 0,0357
5 32 0,1591 0,0341 0,0417 0,0625 0,0312 0,0028 0,0341

2.1.2 Линейные коэффициенты определяем по формуле:

2.1.3. Коэффициенты парного взаимодействия:

где xiu, xju-кодированные значения уровней i-го и j-го факторов соответственно и в u-том опыте.

2.1.4 Коэффициенты при квадратичных членах уравнения регрессии определяют:

После вычисления коэффициентов уравнения регрессии переходят к оценке их значимости.

2.2. Оценка значимости коэффициентов уравнения регрессии.

2.2.1 Определяем дисперсию воспроизводимости S2{y} по формуле (дублирование опытов проводится только в нулевой точке).

где n0 = 5 – число опытов в нулевой точке;

= 252 – средний результат в нулевой точке;

y0j - каждый отдельный результат в нулевой точке.

2.2.2 Дисперсию (среднеквадратическую ошибку) в определении коэффициентов определяют для свободного члена:

для линейных коэффициентов:

для коэффициентов парного взаимодействия:

для квадратичных коэффициентов:

Формулы для подсчёта постоянных С, А, λ приведены ниже:

где N – общее число опытов;

k – число факторов в эксперименте.

2.2.2 Определение доверительных интервалов для оценки значимости коэффициентов уравнения.

Доверительные интервалы для b0,bi,bji и biiсоответственно определяют по формулам:

Проверяем значимость коэффициентов уравнения, сравниваем соответствующий доверительный интервал с величиной коэффициента. |bi|<|∆bi|. Итак, коэффициенты парного взаимодействия незначимы, т.к. их числовые значения меньше по модулю их доверительного интервала, следовательно, эти коэффициенты исключаются из уравнения регрессии. А все остальные коэффициенты значимы, т.к. их числовые значения больше по модулю их доверительного интервала.

2.3. Составление уравнения регрессии.

Адекватность уравнения проверяем по критерию Фишера:

где дисперсию адекватности определяем по формуле:

где

- среднее экспериментальное значение критерия в каждом опыте;

- расчётное значение критерия;

y0j- значение критерия в каждой нулевой точке;

- среднее значение критерия в нулевой точке.
№ опыта Результат эксперимента
Расчётное значение
12345678910111213 200380150300270340180330240255260245260 204.497311.743225.021332.267217.547369.192228.874257.895252.062252.062252.062252.062252.062 -4.49768.257-75.021-32.26752.453-29.192-48.87472.105-12.0622.9387.938-7.0627.938 ––––––––1449644964

Fp<FT

Определив расчётное значение критерия Фишера и сравнив его с табличным, определили адекватность уравнения регрессии изучаемому процессу.Расчётное значение критерия Фишера меньше табличного Fp<FT, следовательно, гипотеза об адекватности не отвергается, и уравнение регрессии соответствует реальному процессу, т.е. связь между критерием (y) и факторами (x) линейная.

Вывод: В данной работе по результатам экспериментальных данных, содержащихся в 1 части задания, мы достроили рабочую матрицу эксперимента, и перешли к планированию многофакторного эксперимента второго порядка. Уравнение регрессии при этом представляет полином второй степени. Получили следующее уравнение регрессии: