Лабораторная работа №1
Отбор образцов, проб и выборок для исследования свойств текстильных материалов, методы оценки неровности текстильных материалов
Цель работы
1.Изучить принципы и методы отбора образцов, проб и выборок при исследовании свойств текстильных материалов.
2.Изучить способы вычисления основных статистических характеристик.
Содержание работы
1.Изучить принципы отбора образцов, проб и выборок. Основные понятия и определения.
2.Результаты исследования свойств текстильных материалов.
3.Расчет статистических характеристик результатов измерений классическим способом.
4.Расчет статистических характеристик упрощенными способами.
5.Анализ результатов работы, формулировка выводов.
Пособия и инструменты: образцы текстильных материалов, микрокалькулятор.
Общие сведения
Контроль качества продукции осуществляют сплошным и выборочным способами. В легкой промышленности и бытовом обслуживании наиболее часто применяется выборочный контроль качества продукции. При этом партию продукции рассматривают как генеральную совокупность единиц любой продукции, а ее исследуемую часть называют одинаково – выборкой.
Чтобы выборка отражала свойства партии продукции и позволяла прогнозировать их, выборку необходимо отбирать по определенным правилам.
Объем выборки определяется неравномерностью продукции и величиной доверительных границ или интервала, в пределах которых должно находиться искомое значение показателя свойств всей партии продукции. Чем больше неравномерность материала (неоднородность) и чем больше задаваемая величина доверительного интервала, тем большим должен быть объем выборки. По возможности объем выборки принимают минимальным для ускорения испытаний. Выборочные значения характеристик распределения вероятностей в генеральной совокупности называют оценками или статистиками. К основным статистикам относятся среднее, дисперсия, среднеквадратическое отклонение, коэффициент вариации.
Выборочной совокупностью или просто выборкой называют совокупность случайно отобранных объектов.
Генеральной совокупностью называют совокупность объектов, из которых производится выборка.
Образец – часть объекта испытания, который непосредственно подвергается испытанию.
Методы отбора проб:
На практике применяются различные методы отбора проб. Принципиально их можно подразделить на два вида:
1. Отбор, не требующий расчленения генеральной совокупности на части:
а) простой случайный бесповторный отбор;
б) простой случайный повторный отбор.
2. Отбор, при котором генеральная совокупность разбивается на части:
а) типический отбор;
б) механический отбор;
в) серийный отбор.
Простым случайным называют такой отбор, при котором объекты извлекают по одному из всей генеральной совокупности.
Типическим называют отбор, при котором объекты отбираются не из всей генеральной совокупности, а из каждой ее «типической» части.
Механическим называют отбор, при котором генеральную совокупность «механически» делят на столько групп, сколько объектов должно войти в выборку, а из каждой группы отбирают один объект.
Серийным называют отбор, при котором объекты отбирают из генеральной совокупности не по одному, а «сериями», которые подвергаются сплошному обследованию.
Подчеркнем, что на практике часто применяется комбинированный отбор, при котором сочетаются указанные выше способы.
Выполнение работы
1. Результаты измерений испытания данной выборки и результаты расчета статистик, заносятся в табл. 1.
Таблица 1
№п.п. | Первичные результаты измерений Xi, г/м² | Отклонение первичного результата от среднего (Xi- X) | Квадратическое отклонение (Хi– Х)2 |
1 | 552,8 | 6,7 | 44,89 |
2 | 548,7 | 2,6 | 6,76 |
3 | 537,3 | -8,8 | 77,44 |
4 | 545,0 | -1,1 | 1,21 |
5 | 542,4 | -3,7 | 13,69 |
6 | 550,2 | 4,1 | 16,81 |
∑Xi | ∑(Xi-X) | ∑(Xi-X)2 | |
3276,4 | -0,2 | 160,8 |
2. Обрабатывает полученные результаты классическим способом.
2.1. Средний результат наблюдаемого признака определяют по формуле:
2.2. Отклонение каждого наблюдения в опыте от среднего:
2.3. Определяут дисперсию теоретического распределения:
2.4. Выборочное среднеквадратическое отклонение определяют по формуле:
3.5.Выборочное значение коэффициента вариации СВ (%), являющейся мерой относительной изменчивости наблюдаемой случайной величины, вычисляют по формуле:
При большом числе испытаний используют упрощенные способы вычислений статистик (произведений, сумм).
3. Вычисление статистических характеристик способом произведений.
Результаты измерений толщины кожи в мм:
1.23 | 1.23 | 1.28 | 1.26 |
1.22 | 1.25 | 1.24 | 1.24 |
1.26 | 1.24 | 1.21 | 1.22 |
1.20 | 1.25 | 1.23 | 1.25 |
1.21 | 1.27 | 1.25 | 1.21 |
1.25 | 1.24 | 1.24 | 1.27 |
1.28 | 1.22 | 1.20 | 1.24 |
1.24 | 1.23 | 1.24 | 1.26 |
1.26 | 1.24 | 1.27 | 1.24 |
1.24 | 1.26 | 1.25 | 1.24 |
При числе испытаний n=40 применяем упрощённый способ подсчёта среднего арифметического, среднего арифметического отклонения и коэффициента вариации, результаты первичных наблюдений разбиваем на разряды с определённым интервалом и определяем частоту встречаемости результатов наблюдений в каждом разделе.
По таблице 2 определяем кол-во классов, т.к. n=40, то выбираем 10 классов.
Таблица 2
Число испытаний | 25 | 50 | 100 | 200 | 500 | более 500 |
Количество классов | 7…11 | 8…13 | 9…14 | 10…16 | 12…18 | 14…20 |
Определяем размах результатов испытаний R. Для этого из всей совокупности результатов выбирает наибольшую Хmaxи наименьшую Хmin величины и определяем разницу между ними:
Далее определяем интервал класса (разряда):
После определения интервала класса первичные результаты группируют по разрядам и определяют частоту ni (табл.3).
Таблица 3
Номер разрядов | Границы разрядов | Частота | Условное отклонение | Сумма S1 | Сумма S2 |
1 | 1.20…1.208 | 2 | -5 | -10 | 50 |
2 | 1.208…1.216 | 3 | -4 | -12 | 48 |
3 | 1.216…1.224 | 3 | -3 | -9 | 27 |
4 | 1.224…1.232 | 4 | -2 | -8 | 16 |
5 | 1.232…1.240 | 4 | -1 | -4 | 4 |
6 | 1.240…1.248 | 8 | 0 | 0 | 0 |
7 | 1.248…1.256 | 6 | +1 | 6 | 6 |
8 | 1.256…1.264 | 5 | +2 | 10 | 20 |
9 | 1.264…1.272 | 3 | +3 | 9 | 27 |
10 | 1.272…1.280 | 2 | +4 | 8 | 32 |
10 | 40 | 10 | 230 |
Определяем условное среднее значение x0 как полусумму значений нижней границы класса:
Среднее арифметическое результатов испытаний:
Определяем сумму квадратов отклонений
:Вычисляем среднеквадратическое отклонение:
Далее определяем коэффициент вариации:
Выводы: в процессе выполнения лабораторной работы были изучены принципы и методы отбора образцов, проб и выборок при исследовании свойств текстильных материалов, способы вычисления основных статистических характеристик.
Были определены структурные характеристики, поверхностная плотность и толщина кожи классическим и упрощённым методом. При оценке толщины кожи упрощённым методом получили высокий показатель коэффициента вариации СВ. Это можно объяснить тем, что при измерении толщины был большой размах результатов испытаний R. При этом в процессе статистической обработки были удалены случайные и грубые ошибки, которые могли появиться в результате невнимательного снятия и записи показаний толщиномера, наличия погрешности в измерении прибора, неровноты толщины кожи.
Лабораторная работа №2.
Тема: Однофакторный эксперимент. Определение линейного уравнения регрессии первого порядка
Цель работы
Освоение методов математической обработки результатов исследования свойств текстильных материалов; определение уравнения регрессии по данным однофакторного эксперимента.
Пособия и инструменты: таблицы значений критериев Кочрена, Стьюдента, Фишера; микрокалькулятор.
Содержание работы
1. Статистическая обработка первичных результатов эксперимента.
2. Расчет критерия Кочрена и проверка однородности дисперсии в опытах матрицы.
3. Определение средней дисперсии выходного параметра в опытах матрицы.