Структурно – механічні характеристики і реологічні константи безпосередньо зв’язани з кристалічною будовою та фізико – хімічними властивостями глинистих компонентів. Вони враховують зміни товщини гідратних прошарків між частинками дисперсної фази і кількість останньої в одиниці об’єму, тобто визначають міцність та реологічні особливості поведінки подібного роду систем.
Також у статті [11] показано, що із збільшенням початкового вологовмісту глинистих компонентів інтенсивність сушки збільшується. З двох досліджуваних глинистих компонентів, які мають різний мінералогічний склад, найбільшу вологопотребу має жана – даурський каолін, найменшу – хвости гравітації циркон – ільменітових руд (ГЦІ), так як вміщують незначну кількість монтморіллоніту. Каолін, як відомо легше віддає вологу ніж монтморіллоніт, тому вироби, які отримані на основі жана – даурського каоліну будуть швидше сохнути ніж вироби із ГЦІ, відповідно і терміни сушки при цьому значно скоротяться.
Проведення досліджень при порівняльних оцінках показали, що жана – даурський каолін має відносно глинистої частини “хвостів” гравітації циркон – ільменітових руд по усадочним і сушильним властивостям найбільш низькі показники інтервалу усадки, міри усадки, відносної усадки та формувальної вологості.
Многостатність різновидів глинистих порід та різноманітна поведінка в технологічному процесі, за думкою авторів [12], обумовлює необхідність прогнозування і регулювання основних технологічних властивостей глин, що неможливо без їх детального дослідження.
Комплексна оцінка глинистої сировини передбачає визначення цілого ряду показників, таких як хімічний, гранулометричний, речовинний склади, особливості структури глинистої складової, фізико – хімічні і технологічні властивості.
Температура випалу глин при отриманні шамоту складає приблизно – 1400 - 1500 °С, що робить цю операцію достатньо дорогою, тому пошук способів довипалювальної підготовки глин, що дозволяє знизити температуру процесу і підвищити міру їх крістобалітизації і мулітизації, представляє інтерес. При механічній активації (МА) різних матеріалів енергія, яка до них підводиться направлена на «розхитування» їх кристалічних решіток з одночасним збільшенням питомої поверхні [13].
При частковому перетворенні в процесі МА α-кварца у β-кварц і високотемпературну фазу β-крістобаліт утворюються структури, які співіснують з α -кварцем. При МА глинозему на поверхні зерен утворюються дефектні структури у вигляді мікрокристаллитів А1203, що підтверджується зменшенням розмірів областей когерентного розсіювання, збільшенням відносних розмірів мікроспотворень кристалічної решітки і зростанням концентрацій поверхневих дислокацій.
При цьому високоаморфізований шар на поверхні активованого α - А1203, який володіє підвищеною реакційною здатністю, ефективно взаємодіє як з твердими, так і з рідкими речовинами. Це істотньо підвищує міру гідратації поверхні, а також фазових перетворень активованого глинозему при прожарюванні при 1200 °С. Гідрофільність поверхні каолініту при активуванні зростає, поки зберігається його крісталічна структура, і зменшується при переході мінералу в аморфний стан.
МА глини проводиться в будь-якому з високоенергонапружених млинів і приводить до фрагментарних змін дифракційної картини. На рентгенограмах з'являються лінії, близькі до основних ліній високотемпературного кристобаліту. Це означає, що частична структурна перебудова трігонального Si02 у вищу кристалографічну форму — крістобаліт (тетрагональний або кубічний) відбувається в процесі МА, а не в результаті нагрівання глини до температур, при яких мають місце ці фазові переходи.
При випалу глини до 900 °С кристобаліт, муліт і силіманіт, як фази, характерні для шамоту, на дифрактограмах ще не фіксуються, а з кристалічних з'єднань залишається лише кварц.
Обробка глини у вібромлині впродовж всього 5 хвилин приводить до механохімічного ефекту, який виявляється в тому, що при подальшому нагріванні проби в інтервалі 900-1100 °С в ній найбільш активно протікає процес крістобалітизації Si02 з одночасною мулітизацією.
В теперішній час велику увагу приділяють захисту навколишнього середовища. У зв’язку з цим намітилася тенденція до використання у виробництві вогнетривів шлаків металургійних виробництв. При виробництві феросплавів і лігатур способом алюмінотермічного відновлення металів з оксидних та інших з'єднань протікає реакція:
Me2O3 + 2Al → 2Me + А1203 (4.1)
У зв’язку з цим на відміну від усіх шлаків чорної та кольорової металургії за думкою авторів [14], хімічною основою алюмінотермітних шлаків(АТШ) являється глинозем, середній вміст якого у них не менше 60мас.%. Мінеральний (фазовий) склад АТШ зображений переважно оксидними з'єднаннями у системах СаО - Al2O3 (шлаки металічного хрому), СаО -МgO - Al2O3 (ферохрому), СаО - Al2O3-TiO2 (феротитану) та частково СаО -МgO - Al2O3- SiO2 (деякі феросплави поточного виробництва). Хімічний склад та головні фізико – хімічні властивості мінералів АТШ зумовлюють можливість їх широкого використання для виробництва вогнетривів.
При виготовленні вогнетривів виключна увага приділяється реологічним властивостям формувальних систем. Це обумовлено тим, що мінімізація вологості сумішей сприяє покращенню фізико – хімічних властивостей, тобто і експлуатаційних характеристик.
На підставі досліджень [15] зроблено припущення про схему впливу комплексних добавок на реологічні властивості глинистих суспензій. Сорбуючись на поверхні глинистих частинок, добавки утворюють мономолекулярний шар. Сода, яка може входити до складу комплексів, зв’язує йони Са2+, Al3+, Fe3+ у важкорозчинні з’єднання, збільшуючи їх адсорбцію на частинках глини. Так як добавки є аніоноактивними речовинами, при їх адсорбції на поверхні частинок спостерігається зростання електричного потенціалу, що призводить до підвищення агрегативной стійкості системи. Найбільше зростання значення потенціалу відбувається при введенні комплексних добавок.
Введення в склад формуючих сумішей добавок – пластифікаторів, на думку авторів [16], дозволяє поліпшити властивості, форму і розмір готових виробів. В результаті проведених дослідів впливу виду пластифікаторів на структурно – механічні характеристики глиноземистих мас був визначений раціональний склад комбінованих пластифікуючих зв’язок, які містять сополімер целюлози, карбоцепний поліамід та багатоатомний спирт, які можуть бути використані при формуванні.
Підвищення вмісту Al2O3 у виробах завжди призводить до підвищення вогнетривкості. Чим більше Al2O3 у сировині, тим більша імовірність отримання високовогнетривких виробів.
Останнім часом на світовому ринку активно діє Китай, який є визнаною сировинною базою для виробництва вогнетривів [17].
Вогнетривкий боксит, загальне виробництво якого складає 1,07 млн.т, видобувається лише в трьох містах: у Гайані, Бразилії та Китаї. Ведучим виробником є Китай.
Диаспорова високоглиноземиста глина, яка видобувається у Китаї прирівнюється до бокситу. Китайські боксити – це в основному діаспор та діаспор каолін (AlO(OH): 84,98% Al2O3, 15,02% H2O).
Близько 40 – 50% коричневого плавленого глинозему (BFA), який отримують кальцинуванням абразивного бокситу, використовується при виготовленні вогнетривів. Загальний об’єм світового ринку складає близько 900 тис.т, а світова виробнича потужність BFA – близько 1млн.т/р. Основні джерела: Китай, США, Канада, Бразилія, Венесуела, Німеччина, Франція, Індія.
Основними світовими джерелами вогнетривких глин є Китай (4 млн. т), США (2млн. т), Франція(0,5млн. т), Німеччина (0,3млн. т). Сумарне вживання вогнетривких матеріалів у Китії складає близько 7,5 млн. т/г., 40% яких йде на високоглиноземисту та кремнеземисту глину.
Муліт (3Al2O3 ∙2SiO2) завдяки своєї вогнетривкості та міцності є надзвичайно корисним мінералом. Виготовляється він кальціонуванням кіаніту, бокситовогу каоліну та глинозему. Основні сорти муліту містять 50, 60 та 70% Al2O3.
За останне десятиліття ринок вогнетривів пережив великі перетворення, що вплинуло на споживання вогнетривких матеріалів, тобто об’єми, типи та способи торгівлі ними.
Китай є найбільш великим джерелом більш дешевої, але відносно якісної сировини, а розширення його ринку зв’язане з швидким ростом сталеливарної промисловості. В виробництві сталі спостерігаються перехід від використання низькосортної вогнетривкої глини до використання високоякісних продуктів, наприклад плавленого магнезиту та периклазу. Доля імпорту шамотних та високоглиноземистих виробів постійнозростає і за останніми данними підвищилась до 39,2%.
Можна зробити висновок, що Китай є світовим лідером у виробництві бокситів, плавленого глинозему, спеченого магнезиту та вогнетривкої глини. Немає сумнівів, що роль Китаю, як головного джерела сировини для отримання вогнетривів не тільки збережеться, але і буде збільшуватися.
Обговорення відомостей про запаси і освоєнності родовищ вогнетривких і тугоплавких глин, а також класифікації показників технологічних властивостей глинистої сировини і каолинів активно ведеться на Україні і пострадянському просторі [18, 19].
Таким чином, основні напрямки покращення якості шамотних вогнетривів для футеровки мартенівських печей зв’язані з розробкою нових родовищ глин та каолинів; детальним вивченням фізико – хімічних та структурно – реологічних властивостей глинистої сировини; пошуком способів довипалювальної підготовки глин, що дозволяє знизити температуру випалу за рахунок механічної активації.