Смекни!
smekni.com

Сварочные сосредоточенные источники нагрева (стр. 1 из 2)

СВАРОЧНЫЕ СОСРЕДОТОЧЕННЫЕ ИСТОЧНИКИ НАГРЕВА

Принцип местного влияния источников тепла устанавливает, что температурное поле зависит существенным образом от характера распределения источника тепла лишь на расстояниях одного порядка с размерами области, занятой источником. В области, удаленной от источника, температурное поле практически не изменяется, если заменить распределенный источник тепла приложенным в центре его тяжести сосредоточенным источником равной мощности. Вблизи дуги температурное поле в изделии любой формы и размеров является пространственным и определяется характером распределения тепла дуги. Размеры области пространственного распределения имеют один порядок с размерами дугового пятна в массивных изделиях, а также с толщиной листа или с размерами поперечного сечения стержня или полосы. Вдали от дуги температурные поляопределяются формой изделия, т. е. в массивных изделиях являются пространственными, в листах — плоскими, а в полосах или стержнях — линейными и не зависят от характера распределения тепла источника.

Распространение тепла от мгновенных сосредоточенных источников

Мгновенный точечный источник.Распространение температуры при распространении теплоты от мгновенного источника теплоты, приложенного в точке О на поверхности полубесконечного тела (рис. 6.1), аналогично распространение температуры для бесконечного тела. Это объясняется тем, что граница тела хОу принимается непропускающей теплоту. Так как теплообмен на границе хОу отсутствует и теплота распространяется только в одну сторону от плоскости хОу, то процесс будет выражаться уравнением для мгновенного точечного источника в бесконечном теле с заменой в нем величины Qвеличиной 2 Q:


(6.1)

Теплоотдачей с поверхности хОу можно пренебречь, потому что распределение теплоты в полубесконечном теле в основном зависит от распространения ее путем теплопроводности в глубь тела, а не от теплоотдачи. Теплоотдача с поверхности безусловно оказывает некоторое влияние на распределение температуры, но в ряде случаев может не учитываться. Учет теплоотдачи существенно усложняет задачу определения температуры точек тела.

Рис. 6.1. Распределение температуры по радиусу R в различные моменты времени tв процессе распространения теплоты от мгновенного точечного источника в полубесконечном теле:

Q = 2000 дж; ср = 4 дж/см3· град; а=0,1 см2/сек

Структура уравнения (6.1) позволяет установить влияние количества введенной теплоты и теплофизических свойств материала на температуру отдельных точек тела. Чем больше Q, тем выше температура точек тела в любой момент времени. Температура прямо пропорциональна количеству введенной теплоты Q(рис. 6.2, а).

Температура точек тела, расположенных на различных расстояниях Rот точки О, вначале повышается, достигает максимума, а затем уменьшается (рис. 6.2, б). Чем дальше от места введения теплоты находится точка, тем позже достигается максимальная температура и тем ниже ее значение. Расчетная температура точки О в начальный момент времени при t=0 стремится к бесконечности. С течением времени конечное количество теплоты растекается в неограниченном объеме полубесконечного тела и температуры всех точек стремятся к нулю.

Рис. 6.2. Зависимость процесса распространения теплоты от мгновенноготочечного источника в полубесконечном теле: а — от количества введенной теплоты Q; б — от расстояния Rдо точки О; в — от теплоемкости материала cγ

При постоянной теплоемкости cγувеличение коэффициента теплопроводности металла λ приводит к ускорению процесса распространения теплоты. Максимальные достигаемые значения температур в различных точках остаются теми же самыми, но продолжительность времени с момента введения теплоты до получения максимальной температуры сокращается во столько раз, во сколько раз повышается теплопроводность материала λ. Указанная закономерность обнаруживается, если преобразовать уравнение (6.1), приняв a = λ/cγ:

(6.2)

Коэффициент λвходит как сомножитель времени t. Поэтому с увеличением λ картина распределения температур в теле остается подобной, но процесс изменения температур ускоряется. Иными словами, если произвести киносъемку изменения полей температур, а затем изображение показать с повышенной скоростью, то наблюдаемая картина будет соответствовать процессу изменения температур в теле с большей теплопроводностью.

Теплоемкость металла cγ при постоянной теплопроводности λ оказывает более сложное влияние на процесс распространения теплоты в полубесконечном теле. Изменение теплоемкости можно представить, как одновременное действие двух процессов: изменения количества введенной теплоты и изменения скорости распространения теплоты. Запишем уравнение (6.1) иначе:

(6.3)

Увеличение теплоемкости ср при λ=const равносильно одновременному уменьшению Q и λ. Температура точек тела уменьшается при одновременном замедлении процесса распространения теплоты. На рис. 6.2, в представлены для сравнения термические циклы в одной и той же точке тела при разных сγ.

Распространение тепла мгновенного линейного источника

При распространении теплоты от мгновенного линейного источника в пластине, плоскости которой не пропускают теплоты, температура в каждой точке будет одинаковой по толщине пластины. Влияние Q, λ и cγ на процесс распространения теплоты и на распределение температур будет такое же, как и в случае мгновенного точечного источника теплоты в полубесконечном теле.

Изменение температуры во времени качественно протекает так же, как и в полубесконечном теле, т. е. температура отдельных точек пластины вначале повышается, достигает максимума, а затем уменьшается. Более удаленные точки нагреваются до меньших максимальных температур. Однако распространение теплоты в пластине происходит более стесненно, чем в полубесконечном теле. В то время как в полубесконечном теле теплота распространяется в направлении трех координатных осей х, у, z, в пластине теплота распространяется только в двух направлениях— х и у. Это приводит к тому, что процесс изменения температуры во времени происходит в пластине медленнее.

Теплоотдача через поверхности пластины оказывает более заметное влияние на поле температур, чем это имеет место в полубесконечном теле. При расчетах температур в пластинах в ряде случаев, в особенности если пластины тонкие, необходимо учитывать теплоотдачу в окружающую среду.

(6.4)

Уравнение (6.4) содержит множитель e-bt, который учитывает теплоотдачу в окружающее пространство, но не отражает того факта, что теплота отдается с поверхности пластины и температура по ее толщине неравномерна. В тонких пластинах, несмотря на значительную теплоотдачу, неравномерность распределения температуры по их толщине незначительна и ею можно пренебрегать. В некоторых случаях неравномерность температуры по толщине пластин может достигать нескольких десятков градусов. Чем продолжительнее процесс распространения теплоты, тем большее значение имеет теплоотдача в изменении температуры пластины.

Распространение тепла мгновенного плоского источника

Теплота от мгновенного плоского источника в стержне распространяется в основном в направлении вдоль стержня. Если пренебрегать теплоотдачей боковых поверхностей, то температуру по поперечному сечению стержня можно считать равномерной, а процесс распространения теплоты — линейным. В случае заметной теплоотдачи с поверхности температура по поперечному сечению стержня будет неравномерной. Учет теплоотдачи производится путем введения в уравнение сомножителя e-bt, который отражает лишь понижение средней температуры в сечении, но не выражает неравномерности температуры по толщине стержня:

(6.5)

Здесь bпо аналогиис пластиной является коэффициентом температуроотдачи длястержня: b= αp/cγF, где р — периметр поперечного сечения стержня, см.

Тепловой поток в воздух в единицу времени с единицы стержня q = -αрТ. Тепловой поток в стержне еще более стеснен по сравнению с пластиной и массивным телом, поэтому процесс изменения температуры во времени происходит еще медленнее, чем в пластине.

Сравнение процессов — пространственного, плоского и линейного. Процессы распространения тепла мгновенных источников в л теле, пластине и стержне, описываемые уравнениями (6.1), (6.4) и (6.5), отличаются друг от друга характером зависимости температуры от времени. Температура точек, где был приложен источник тепла, в зависимости от времени представлена графически для трех основных геометрических форм — полубесконечного тела, пластины и стержня (рис. 6.3).

Кривая 1 описывает изменение температуры для пространственного процесса распространения тепла в полубесконечном теле от сосредоточенного точечного источника, кривая 2 — для плоского процесса в пластине от линейного источника и кривая 3 — для линейного процесса в стержне от плоского источника. В полубесконечном теле— кривая 1 — изменение температуры описывается гиперболой степени 3/2; TR=0=C/t3/2, в пластине функцией Tr=0=B/t·e-bt. Если бы можно было пренебречь теплоотдачей в окружающую среду (b=0), то кривая 2 выражалась бы простой гиперболой. Множитель e-bt ускоряет процесс охлаждения вследствие теплоотдачи. Кривая 3 представляет функцию Тx=0=A/t-1/2·e-bt; для стержня с непропускающей тепла поверхностью (b=0) кривая 3 выражается гиперболой степени½.