СОДЕРЖАНИЕ
ВВЕДЕНИЕ
1. МЕТАЛЛУРГИЯ АЛЛЮМИНИЯ, ЦВЕТНЫХ МЕТАЛЛОВ
1.1 История развития алюминиевой промышленности
1.2 Производство первичного алюминия и основные направления его потребления
2. СПЕЦ. ЧАСТЬ
2.1 Виды электродных изделий и требования к ним
2.2 Производство анодной массы и др. электродов
3. КПВО (карта пошагового выполнения операции)
3.1 Отчерпывание электролита из электролизера в урны
4. ЭКОНОМИЧЕСКАЯ ЧАСТЬ
4.1 Разработка производственной программы
5. ТЕХНИКА БЕЗОПАСНОСТИ
5.1 Санитарно-гигиенические характеристики условий труда
5.2 Электробезопасность
5.3 Техника безопасности при обслуживании электролизеров
6. ГРАФИЧЕСКАЯ ЧАСТЬ
6.1 Таблица - Технические требования к качеству анодной массы (ТУ 48-5-80-86)
6.2 Схема производства электродных изделий
ЗАКЛЮЧЕНИЕ
ИСПОЛЬЗУЕМАЯ ЛИТЕРАТУРА
ВВЕДЕНИЕ
Для изготовления любых изделий, предназначенных к восприятию внешних сил, применяют не чистый алюминий, а его сплавы, которых в настоящее время разработано достаточно много марок.
Введение различных легирующих элементов в алюминий существенно изменяет его свойства, а иногда придает ему новые специфические свойства. При различном легировании повышаются прочность, твердость, приобретается жаропрочность и другие свойства. При этом происходят и нежелательные изменения: неизбежно снижается электропроводность, во многих случаях ухудшается коррозионная стойкость, почти всегда повышается относительная плотность. Исключение составляет легирование марганцем, который не только не снижает коррозионную стойкость, но даже несколько повышает ее, и магнием который тоже повышает коррозионную стойкость (если его не более 3%) и снижает относительную плотность, так как он легче, чем алюминий.
Основными легирующими элементами в различных деформируемых сплавах являются медь, магний, марганец и цинк, кроме того, в сравнительно небольших количествах вводятся также кремний, железо, никель и некоторые другие элементы.
Для получения деформируемых сплавов в алюминий вводят в основном растворимые в нем легирующие элементы в количестве, не превышающем предел их растворимости при высокой температуре. В них не должно быть эвтектики, которая легкоплавка и резко снижает пластичность.
Деформируемые сплавы при нагреве под обработку давлением должны иметь гомогенную структуру твердого раствора, обеспечивающую наибольшую пластичность и наименьшую прочность. Это и обусловливает их хорошую обрабатываемость давлением.
Деформируемые сплавы используются в автомобильном производстве для внутренней отделки, бамперов, панелей кузовов и деталей интерьера; в строительстве, как отделочный материал; в летательных аппаратах и др. Алюминий в большом объёме используется в строительстве в виде облицовочных панелей, дверей, оконных рам, электрических кабелей. Алюминиевые сплавы не подвержены сильной коррозии в течение длительного времени при контакте с бетоном, строительным раствором, штукатуркой, особенно если конструкции не подвергаются частому намоканию.
Деформируемые алюминиевые сплавы делят на упрочняемые и неупрочняемые. Это наименование отражает способность или неспособность сплава заметно повышать прочность при термической обработке.
Уже сейчас трудно найти отрасль промышленности, где бы ни использовался алюминий или его сплавы - от микроэлектроники до тяжёлой металлургии. Это обуславливается хорошими механическими качествами, лёгкостью, малой температурой плавления, что облегчает обработку, высоким внешними качествами, особенно после специальной обработки. Учитывая перечисленные и многие другие физические и химические свойства алюминия, его неисчерпаемое количество в земной коре, можно сказать, что алюминий - один из самых перспективных материалов будущего.
1. МЕТАЛЛУРГИЯ АЛЛЮМИНИЯ, ЦВЕТНЫХ МЕТАЛЛОВ
1.1 История развития алюминиевой промышленности
Алюминий сравнительно недавно стал промышленным металлом. Впервые металлический алюминий получил датский физик Г. Эрстед в 1825 г. восстановив хлористый алюминий амальгамой калия. В дальнейшем способ Эрстеда был улучшен: амальгаму калия заменили металлическим калием, а затем - более дешевым натрием. Нестойкий и гигроскопичный хлористый алюминий заменили двойным хлоридом алюминия и натрия (AlCl3-NaCI).
В 1865 г. русский ученый Н.Н. Бекетов предложил получать алюминий вытесненном его из фтористых соединении магнием. Этот способ нашел применение в ряде стран Западной Европы. Производство алюминия “химическими” методами осуществлялось примерно в течение 35 лет (с 1854 до 1890 г.). За это время было получено около 200 т алюминия. В конце 80-х годов прошлого столетия химические способы производства алюминия были вытеснены электролитическим.
Основоположниками электролитического способа производства алюминия являются Поль Эру во Франции и Чарльз Холл в США, которые в 1866 г. независимо друг от друга заявили аналогичные патенты на способ получения алюминия электролизом глинозема (А1203), растворенного в расплавленном криолите (Na2AIF6). С открытием электролитического способа началось быстрое развитие алюминиевой промышленности. Если в 1900 г. выпуск алюминия во всем мире составил 5,7 тыс. т, но уже к 1930 г. он приблизился к 270 тыс. т, в 1950 г. составил (без стран социализма) около 1,3 млн. т, а в 1980 г. - более 12 млн. т.
В капиталистическом мире основными производителями алюминия являются США, Япония, Канада, ФРГ, Норвегия.
В дореволюционной России не было собственной алюминиевой промышленности. Однако в конце прошлого и начале настоящего столетия русские ученые (Н.Н. Бекетов, П.П. Федотьев, Н.А. Пушин, Д.А. Пеняков, Е.И. Жуковский и другие) выполнили ряд исследований, сыгравших большую роль в развитии мировой алюминиевой промышленности. Под руководством П. П. Федотьева были проведены глубокие исследования теоретических основ электролитического способа получения алюминия, в частности были исследованы двойные системы фторид алюминия - фторид натрия, криолит - глинозем, явления растворимости алюминия в электролите, анодный эффект, а также ряд других процессов, связанных с электролизом криолит-глиноземных расплавов. Результаты этих исследований получили мировую известность.
В 1882—1892 гг. химик К.П. Байер разработал в России щелочной способ получения глинозема, который до настоящего времени является основным в мировой алюминиевой промышленности. В 1895 г. Д.А. Пеняков предложил способ получения глинозема из бокситов спеканием с сульфатом натрия в присутствии угля, а А.Н. Кузнецов и Е.И. Жуковский в 1915 г. - способ получения глинозема из низкосортных руд путем восстановительной плавки их на шлаки алюминатов щелочноземельных металлов. Н.А. Пушин с сотрудниками в 1914 г. впервые в нашей стране получил алюминий “русского происхождения”, т. е. из отечественных сырья и материалов.
Условия для создания в нашей стране алюминиевой промышленности, являющейся крупным потребителем электроэнергии, появились только после Великой Октябрьской социалистической революции. Решающую роль в этом сыграл разработанный в 1920 г. по инициативе и под руководством В.И. Ленина план ГОЭЛРО, положивший начало созданию прочной энергетической базы в нашей стране. Построенная в соответствии с этим планом в 1926 г. первая крупная гидроэлектростанция на р. Волхов явилась энергетической базой первого в СССР Волховского алюминиевого завода. В декабре 1927 г. XV съезд ВКП принял решение о создании в нашей стране алюминиевой промышленности, а в августе 192 г. Совет Труда и Обороны принял решение о строительстве в СССР Волховского и Днепровского алюминиевых заводов. В 192 г. на Ленинградском опытном заводе “Красный Выборжец” под руководством П.П. Федотьева были проведены длительные производственные испытания по получению алюминия электролитическим путем из отечественных материалов.
В 193 г. в Ленинграде был пущен опытный завод, который сыграл большую роль в развитии советской алюминиевой промышленности. На этом заводе испытывалось оборудование, осваивался технологический режим, готовились рабочие и инженерно-технические кадры для первых советских алюминиевых заводов. Одновременно были проведены исследования по производству электродных изделий, необходимых для получения алюминия. Результаты этих исследований легли в основу проектирования первых электродных заводов - Московского и Днепровского. Разработанный в Институте прикладной минералогии способ получения криолита был положен в основу проектирования производства криолита на Полевском криолитовом заводе.
В 1930 г. были созданы Научно-исследовательский институт алюминиевой промышленности (НИИС алюминий) и проектный институт - гипроалгомпний.
Позднее НИИС алюминий и Гипроалюминий были объединены в единый Всесоюзный алюминиево-магниевый институт (ВАМИ).
14 мая 1932 г. вступил в эксплуатацию Волховский алюминиевый завод, а в 1933 г. на базе Днепровской ГЭС - Днепровский алюминиевый завод. Очень много внимания становлению советской алюминиевой промышленности уделял С.М. Киров, который возглавлял Ленинградскую партийную организацию. Первым алюминиевым заводам нашей страны - Волховскому и Днепровскому в дальнейшем было присвоено его имя.
В период с 1926 по 1936 г. в Государственном институте прикладной химии (ГИПХ) под руководством А.А. Яковкина был разработан способ получения глинозема из тихвинских бокситов спеканием их с содой и известняком. В результате впервые была разрешена проблема переработки высококремнистых бокситов. В 1938 г. вошел в эксплуатацию Тихвинский глиноземный завод, а в 1939 г. на базе высококачественных североуральских бокситов - Уральский алюминиевый завод.
В начале Великой Отечественной войны Волховский и Днепровский алюминиевые заводы и Тихвинский глиноземный были выведены из строя. Оборудование этих заводов вывезли на Урал и в Сибирь. В годы Великой Отечественной войны был значительно расширен Уральский алюминиевый завод к введены в эксплуатацию Новокузнецкий (1943 г.) и Богословский (1945 г.) алюминиевые заводы.