Министерство образования и науки Республики Казахстан
Павлодарский государственный университет им. С. Торайгырова
Факультет энергетический
Кафедра Автоматизации и управления
КУРСОВОЙ ПРОЕКТ
КП. 050702. 24 - 03. 06. 07. ПЗ
По дисциплине. Автоматизация технологических систем .
Тема Регулирование давления в рабочем пространстве дуговой сталеплавильной печи ДСП-25Н5 .
Руководитель
ст. преподаватель
У.К. Жалмагамбетова .
Студент
А.С. Семёнов
Заведующий кафедрой
профессор, д.т.н. В.Ф. Хацевский
2007
Содержание
Введение.
1 Описание технологического процесса и технологического оборудования
2 Характеристика производственных процессов как объектов автоматизации
2.1 Определение входных, выходных величин, возмущающих воздействий, контролируемых и неконтролируемых параметров
3 Составление структурной схемы
4 Составление функциональной схемы
5 Обоснование выбранного уровня автоматизации
6 Анализ технологической схемы, формирование требований, разработка задания
7 Построение математической модели
8 Синтез системы автоматического регулирования
9 Исследование устойчивости
10 Исследование переходного процесса
11 Выбор аппаратов и составление спецификации
Заключение
Список используемых источников
Введение
Развитие народного хозяйства требует увеличения производства металла, улучшения его качества, увеличения ассортимента изделий. При больших масштабах производства металлов совершенно небезразлично, с какими затратами энергии, материалов будет получена каждая тонна чугуна, стали и различных других цветных металлов. Эта задача не может быть решена без постоянного совершенствования принципов работы и конструкции металлургических печей. Высокие скорости процессов требуют ликвидации ручного труда по обслуживанию печей и управлению тепловым режимом. В последние годы широко внедряется механизация и автоматизация многих операций по загрузке, выгрузке, транспортированию горячего металла. Оптимизация параметров металлургического процесса – температуры, расхода сырья, состава печной атмосферы (среды), давления и многих других, осуществляется с помощью современных средств контроля технологических и теплотехнических процессов.
Конструкция промышленных печей развивается в направлении интенсификации процессов теплообмена при непрерывном повышении уровня их автоматизации и механизации. При этом постоянно растущая производительность машиностроительных заводов предъявляет серьёзные требования к работе промышленных печей.
В современном машиностроении широко применяются различные плавильные и нагревательные устройства (печи), а в таких цехах, как литейные и термические, они являются основным оборудованием и используются для плавления чёрных и цветных металлов, сушки литейных форм и стержней, нагрева для термической и химико-термической обработки (закалки, нормализации, отжига, отпуска, цементации). В прокатных и кузнечно–прессовых цехах печи применяются для нагрева металлов перед обработкой давлением.
При огромном разнообразии промышленных печей общими для всех них являются процессы превращения какого-либо вида энергии в тепловую и передачи тепла нагреваемому материалу. При этом процессу теплообмена должны быть подчинены горение топлива – превращение химической энергии в тепловую, а в электрических печах – превращение электрической энергии в тепло, движение газов в рабочем пространстве печей и т.д. Конструкция печи в целом и её отдельные элементы должны обеспечивать оптимальные условия протекания теплообменных процессов для получения наибольшего теплового потока к обрабатываемому материалу.
Использование электрической энергии в печах позволяет значительно шире применять автоматическое регулирование процессов нагрева и плавления, а также повышает качество продукции. Автоматизированные системы управления, базирующиеся на современных научных достижениях в области технической кибернетики, применении экономико – математических методов, с широким использованием средств вычислительной техники, являются мощным средством повышения производительности труда и качества выпускаемой продукции, значительно экономят материальные, энергетические и трудовые ресурсы.
Развитие систем автоматизации литейного производства от простейших локальных систем автоматического контроля и регулирования до современных автоматизированных систем управления (АСУ) на основе электронно – вычислительных машин является одним из наиболее действенных средств мобилизации резервов дальнейшего повышения технико – экономических показателей металлургических процессов и производства отливок.
Поэтому рассмотренная в данной курсовой работе локальная автоматизация дуговой печи на примере ДСП-25Н5 (дуговой сталеплавильной печи емкостью 25 тонн, производитель: город Новосибирск) ныне действующего завода ПФ ТОО “Кастинг” может иметь практическое применение, так как автоматизация позволяет повысить эффективность производства за счёт устранения ручного труда, качество выпускаемой продукции; позволяет рационально использовать оборудование и материалы, сократить численность рабочего персонала и облегчить условия труда. В то же время локальная система автоматизации повышает культуру производства, качество труда и эффективность использования оборудования.
1 Описание технологического процесса и технологического оборудования
Прежде чем разрабатывать систему автоматического управления или регулирования, необходимо ознакомиться с технологическими особенностями объекта управления.
Объектом регулированиямогут быть различные устройства для осуществления производственных процессов, энергетические и силовые установки, летательные аппараты и транспортные механизмы, специальные установки и устройства, в которых осуществляется регулирование определённых величин по заданным законам управления.
В данном курсовом проекте объектом управления является дуговая электросталеплавильная печь .
Электросталеплавильные печи имеют преимущества по сравнению с другими плавильными агрегатами. В электропечах можно быстро нагревать, плавить и точно регулировать температуру металла, создавать окислительную, восстановительную, нейтральную атмосферу или вакуум. В этих печах можно выплавлять сталь и сплавы любого состава, более полно раскислять металл с образованием минимального количества неметаллических включений – продуктов раскисления. Поэтому электропечи используют для выплавки конструкционных сталей ответственного назначения, высоколегированных, инструментальных, коррозионностойких (нержавеющих) и других специальных сталей и сплавов. Инструментальная сталь – сталь, идущая на изготовление режущего, измерительного, штампового и другого инструмента. Легированная сталь – сталь, которая помимо обычных примесей (С, Mn, S, P), содержит и другие (легирующие) элементы (хром, никель, молибден, вольфрам, ванадий, титан и др.), либо кремний или марганец в повышенном против обычного количестве. При суммарном содержании легирующих элементов до 2% сталь считается низколегированной, от 2,5 – 10% – среднелегированной, более 10% – высоколегированной.
Электросталеплавильному способу принадлежит ведущая роль в производстве качественной и высоколегированной стали. Благодаря ряду принципиальных особенностей этот способ приспособлен для получения разнообразного по составу высококачественного металла с низким содержанием серы, фосфора, кислорода и других вредных и нежелательных примесей и высоким содержанием легирующих элементов, придающих стали особые свойства – хрома, никеля, марганца, кремния, молибдена, вольфрама, ванадия, титана, циркония и других элементов.
Дуговая печь – промышленная печь, в которой теплота электрической дуги используется для плавки металлов и других материалов. По способу нагрева дуговые печи делят на печи прямого действия (дуга горит между электродом и нагреваемым телом), печи косвенного действия (дуга горит между электродами) и печи с закрытой дугой (дуга горит под слоем твёрдой шихты). Наибольшее применение в промышленности (главным образом для выплавки стали) находят дуговые печи первого типа.
В этих печах в качестве источника теплоты используют электрическую дугу, возникающую между электродами и металлической шихтой. Дуговая электросталеплавильная печь (рисунок 1) питается трёхфазным переменным током и имеет 3 цилиндрических электрода 9, изготовленных из графитовой массы. Электрический ток от трансформатора гибкими кабелями 7 и медными шинами подводится к электрододержателям 8, а через них к электродам 9. Между электродами и металлической шихтой 3 возникает электрическая дуга, электроэнергия превращается в теплоту, которая передаётся металлу и шлаку излучением. Рабочее напряжение 180 – 600В, сила тока 1 -10кА. Во время работы печи длина дуги регулируется автоматически путём вертикального перемещения электродов. Печь имеет стальной сварной кожух 4. Кожух печи изнутри футерован теплоизоляционным и огнеупорным кирпичом 1, который может быть основным (магнезитовый, магнезитохромовый) или кислым (динасовый). Подина 12 печи набивается огнеупорной массой. Плавильное пространство ограничено стенками 5, подиной 12 и сводом 6, изготовляемым также из огнеупорного кирпича и имеющим отверстия для хода электродов. В стенках печи имеется рабочее окно 10, предназначенное для управления ходом плавки и летка для выпуска готовой стали по желобу 2 в ковш.