ОскількиRe ж1=1396,4знаходиться в межах Reж<2320, то це ламінарнийрежим тому
для шахових пучків труб С=0,41; n=0,60; m=0,1
Значення Prстдля газів мало відрізняється відPrж1, тому можна вважати, що
.Nu ж1= 0,41*1396,4^0,60*0,588^0,36*1=26,11
1.2.8 За числом Nuж1знаходимо конвективний коефіцієнт тепловіддачі, Вт/(м2К)
α1к= Nu ж1* λж1/ dвн=26,11*10,125*10^-2/0,02=132,18
1.2.9 Визначаємо число Рейнольдса Reж2 для холодного теплоносія:
Reж2 = W2*dзов/ νж2=10,557*0,024/30,11*10^-6=8414,7
1.2.10 Визначення Nuж2.
Оскільки холодний теплоносій рухається зовні труб, то для визначення Nuж2 тежвикористовується рівняння (2.15).
Визначальною температурою є t2, а визначальним розміром зв.
Оскільки Reж2=8414,7 знаходиться в межах 2320<Rеж2<10000, то це перехідний процес і
- для шахових пучків труб С=0,41; n=0,60m=0
.Значення Prстдля газів мало відрізняється відPrж2, тому можна вважати, що
.Тоді одержуємо
=0,41*8414,7^0,60*1*0,6796^0,43*1=78,65За числом
знаходимо конвективний коефіцієнт тепловіддачі, Вт/(м2К)α2=
* λж2/dзов=78,65*3,981*10^-2/0,024=130,461.3 Розрахунок коефіцієнта тепловіддачі випромінюванням від гарячого теплоносія до стінки труби
1.3.1 Визначаємо пропорційнийтиск випромінюючих газів, Па
Pco2=P*rco2=1,06*10^5*0,13=13780
PH2o=P*rH2o=1,06*10^5*0,18=19080
1.3.2 Знаходимо ефективну товщину газового шару, м і оскільки гарячий теплоносій рухається зовні труб, то
Lеф=0,9* dвн=0,9*0,02=0,018
1.3.3 Далі обчислюємо добуток парціального тиску випромінюючих газів на ефективну товщину газового шару, Па·м
Pco2* Lеф=13780*0,018=248,04
PH2o* Lеф=19080*0,018=343,44
Залежно від
, , визначаємо ступінь чорноти цих газів з дод.9 і дод.10εco2=0,14
εH2o=0,2
β=1,11
Далі маємо:
εH2o= εH2o* β=0,2*1,11=0,222
Повний ступінь чорноти системи гарячого теплоносія знаходимо з формули
εгаз= εco2* εH2o=0,14*0,222=0,0311
Приведений ступінь чорноти системи обчислюємо за формулою
εприв=1/((1/ εгаз)+(1/ εст)-1)=1/(32,15+1,22-1)=0,03089
1.3.4 Коефіцієнт тепловіддачі випромінюванням
α1в= (εприв*Co*((T1/100)^4-
(Tст/100)^4)))/T1/Tст=(0,03089*5,67*(198857,95-1539,30))/560,72=61,63
1.3.5 Сумарний коефіцієнт тепловіддачі від гарячого теплоносія до стінки труби, Вт/(м2К)
α1= α1в+α1к=61,63+132,18=193,80
1.3.6 Температуру тонких циліндрових стінок (dз/вн=0,024/0,02=1,2<2) визначають за наступними формулами
, ,1.3.7 Площа поверхні труб
F1=3,14*dз*l=3,14*0,024*1=0,075м2,
F2=3,14*d в*l=0,063м2,
Fср=3,14*( dз +d в)/2=3,14*0,022=0,069м2,
δ=( dз +d в)/2=0,022м.
1.3.8 Тоді
tст1=((((193,80*0,075)/(130,46*0,063))+(( 193,80*0,075*0,022)/(55*0,069))*(913,34+207,5))/((1+(193,80*0,075)/(130,46*0,063))+(( 193,80*0,075*0,022)/(55*0,069))=727,94 оС
T ст1= tст1+273,15=1001,09K
tст2=((0,5654+0,0476)*1120,84)/1,613=425,96 оС
T ст2= tст2+273,15=699,11K
1.3.9 Визначення коефіцієнта теплопередачі, розрахунок середнього температурного натиску між теплоносіями і поверхнею теплообмінника
Коефіцієнт теплопередачі К, Вт/(м2·К) через стінки металевих труб можна розрахувати по формулі плоскої стінки
<2,K=1/((1/ α1)+(δ/λ)+(1/ α2))=1/(0,0052+0,0004+130,46)=75,6
Для перехресної течії середньологарифмічний температурний натиск визначається
,∆tпрот=((t``1-t`2)-(t`1-t``2))/ln((t``1-t`2)/(t`1-t``2))=((777,87-15)-(1050-400)/ln(777,87-15)/( 1050-400)=1623,1
ε∆t=поправочний коефіцієнт, визначається з дод 11 в залежності від функції P,R:
P=t``2-t`2/(t`1-t`2)=400-15/(1050-15)=0,37
R=t`1-t``1/(t``2-t`2)=1050-777,87/(400-15)=0,71
ε∆t=1
∆t=1623,1*1=1623,1 оС
Площа поверхні теплообміну F, м2
F=Q2/(k*∆t)=1024300/(75*1623,1)=8,3
2. Конструктивний розрахунок
V1= 2,3 м3/с – витрата димових газів;
V2= 2,0 м3/с – витрата повітря через рекуператор;
1= 2,5 м/с – середня швидкість димових газів; 2= 6 м/с – середня швидкість повітря.2.1 Загальний перетин каналів для проходження димових газів, м2
f1=V1/w1=2,3/2,5=0,92
2.2 Загальний перетин каналів для проходження повітря, м2
f2=V2/w2=2/6=0,33
2.3 Перетин однієї труби ( у світлі), м2
W=0,785*dвн^2=0,785*0,02^2=0,000314
2.4 Число труб (каналів) на шляху руху повітря (тому що потік рухається усередині труб)
nд=f2/w=0,33/0,000314=1051
Для коридорного пучка труб приймаємо n1=30; n2=35
2.5 Визначаємо загальне число труб
n=n1+n2=30*35=1050
2.6 Дійсна площа для проходження повітря, м2
f2=n*w=1050*0,000314=0,3297
2.7 Дійсна швидкість повітря, м/с
wд2=V2/f2=2,0/0,33=6,06
2.8 Крок труб у напрямі руху потоку димових газів і упоперек, м
S1=0,05
S2=0,06
2.9 Ширина каналів для проходження димових газів у вузькому перетині, м
а = S1– dвн= 0,05-0,02 = 0,03
2.10 Висота каналів одного ходу димових газів, м
b=f1/(a*n1)=0,92/(0,03*30)=1,02
2.11 Середній діаметр труб, м
dср=(dвн+dз)/2=(0,02+0,024)/2=0,022
2.12 Довжина труб, м
Lm=F/(π*dср* nд)=8,3*(3,14*0,022*1051)=0,114
2.13 Висота рекуператора визначається таким чином. Раніше була визначена висота одного ходуb. Залежно від схеми руху визначаємо загальну довжину труб, м
Lm заг=k*b+m*c=2*2+0,2*2=4,4
2.14 Враховуючи компенсатор і нижні трубні дошки довжина труб, м
Lm заг= Lm заг+0,2=4,6
2.15 Визначаємо в плані габарити рекуператора
ширина : A=S1*n1=0,05*30=1,5,
довжина: B=S2*n2=0,06*35=2,1
3. Аеродинамічний розрахунок рекуперативного теплообмінника
3.1 Опір від тертя
Опір від тертя при русі повітря або газу по трубах визначають
, Паа) для димових газів
з дод. 6для t1=913,94 оС
=0,301 кг/м3 ;dвн=0,02 м, w1=2,5 м/с, Re=321,461+at = 1+t1/273,15=1+913,94/273,15=4,35
для ламінарного режиму
=64/321,46=0,199,∆Pтр1=μ1*(w1^2/2)*ρ1*(1+at)*(Lmзаг/dв)=0.199*(2,5^2/2)*0,301*4,35*(4,6/0,02)=187,22Па.
б) для сухого повітря
з дод. 9для t2=207,5 оС
= 0,748кг/м3 ; dв =0,024 м;w2=6,0 м/с;Re2=4738,4;1+ at= 1+t2/273,15=1+(207,5/273,15)=1,76
для турбулентного режиму
,А=0,32, n=0,25 для гладкої металевої стінки;
μ=0,32/4738,4^0,25=0,28
∆Pтр2=
μ2*(w2^2/2)*ρ2*(1+at)*(Lmзаг/dз)=0,28*(6,0^2/2)*0,748*1,76*
(4,6/0,024)=1271Па.
3.2 Місцеві опори
До місцевих опорів відносяться різкі зміни перетину, тобто різкі зміни швидкості по шляху руху газу, плавні і різкі повороти, розгалуження трубопроводу та ін.
Втрати тиску на опір пучків труб при русі теплоносія усередині труб, Па
,де
при .(0,05/0,02=0,06/0,024)
звідси :
,n1=30 n2=35
з дод. 14 та дод.15 Сs=0,5 ξ=0,53
ξ=0,5*0,53*30=7,95
7,95*(2,5^2/2)* 0,301*(4,35)=32,5Оскільки сухе повітря рухається зовні труб, то аеродинамічний опір пучків труб, Па
Втрати тиску на опір пучків труб при їх зовнішньому обмиванні:
- при шаховому розташуванні труб
,Δh, СS, Сd– знаходять за номограмами, наведеними в дод. 13, при цьому швидкість потоку приймають у вузькому перерізі пучка при середній температурі потоку;
СS=0,5 Сd=1,9 Δh=0,23
9,81*0,5*1,9*0,23*(30+1)=66,4Загальна втрата тиску в рекуперативній установці по повітряному і димовому тракту може бути визначена
ΣP= ΣP1+ ΣP2=219,72+1337,4=1557,12Па
Σ∆P1 = ΣP1тр+ Σ Р1м=187.22+32,5=219,72Па
Σ∆P2 = ΣP2тр+ Σ Р2м=1271+66,4=1337,4Па
3.3 Потужність електричного приводу дуттьового вентилятора, Вт:
- для переміщення гарячого теплоносія
N1=V1*ρ1*Σ∆P1/η=2,3*0,301*219,72/0,7=217,3
- для переміщення холодного теплоносія
N2=V2*ρ2*Σ∆P2/η=2,9*0,748*1337,4/0,7=2858
Cписок використаної літератури
1. Безверхий П.А. Конструкторский расчет кожухотрубного рекуперативного теплообменника. – Днепропетровск, ДМетИ, 1976. – 30 с.
2. Блох А.Г. Основы теплообмена излучением. – М., Л.: Госэнергоиздат, 1962. – 230 с.
3. Болгарский А.В., Мухачев Г.А., Щукин В.К. Термодинамика и теплопередача. – М.: Высш. школа, 1975. – 355 с.
4. Исаченко В.П., Осипова В.А., Сукомел А.С. Теплопередача. – М.: Энергия, 1975. – 488 с.
5. Краснощеков Е.А., Сукомел А.С. Задачник по теплопередаче. – М.: Энергия, 1975. – 257 с.
6. Михеев М.А., Михеева И.М. Основы теплопередачи. – М.: Энергия, 1973. – 320 с.
7. Ульянов А.В., Тандура И.П., Попова Л.Н. Руководство к лабораторным и практическим занятиям по курсу «Основы теплообмена». – Днепропетровск, ДМетИ, 1975. – 115 с.
8. Хоблер Т. Теплопередача и теплообменники. – Л.: Госхимиздат, - 1961. – 290 с.
9. Якобс И. Вопросы теплопередачи. – М.: ИЛ, 1960. – 350 с.