Смекни!
smekni.com

Технология продуктов общественного питания 3 (стр. 3 из 5)

Наибольшее влияние на качество продукта и потери массы в процессе его тепловой обработки, по-видимому, оказывает физико-химически и физико-механически связанная вода. Ис­пользуя классификацию форм связи П. А. Ребиндера, связанную в мясе воду подразделяют на четыре основных вида.

Первый (слой а) — гидратационная вода, связанная электро­статически с полярными группами белков посредством положи­тельных или отрицательных зарядов водных диполей. Второй (слой b) — связан с белками посредством притяжения водных ди­полей (диполь—диполь). Третий (слой с) — капиллярно связан­ная и адсорбированная вода. Четвертый (слой d) — вода смачи­вания.

Выделяют три формы связывания воды с белком: гидратаци­онная, иммобилизованная и свободная вода.

Гидратационная вода составляет примерно 10 % всей имеющейся в мясе воды, адсорбированной белком. Вследствие двухполюсного характера молекул она присоединяется к ионам и другим полярным группам, имеет измененные физические пока­затели, не поддается физиологическому воздействию, не влияет на колебания водоудерживающей способности.

Иммобилизованная (связанная) вода прочно удерживается сетью мембран и волокнами мышечных белков, а также сцеплениями водородных носителей зарядов. Эта часть воды с большим трудом выжимается и не вытекает из мяса.

Свободная вода находится между клетками, очень «рых­ло» связана и легко вытекает при нагреве. Это обусловливает, с одной стороны, потери массы от испарения при замораживании и холодильном хранении мяса и от вытекания сока при его раз­мораживании, с другой — способствует сушке мясопродуктов.

В зависимости от состояния мышечных белков изменяется со­отношение между иммобилизованной и свободной водой, причем оба ее вида следует рассматривать как единое целое: если количест­во иммобилизованной воды увеличивается, то свободной — сокра­щается, и водоудерживающая способность возрастает; при умень­шении количества иммобилизованной воды повышается содержа­ние свободной, и влагоудерживающая способность понижается.

Для оценки прочности связи воды в мясных изделиях А. А. Со­колов предложил следующую динамическую схему: вода, содер­жащаяся в мясе, подразделяется на прочносвязанную и слабо­связанную, а слабосвязанная — на полезную (которая остается в продукте после тепловой обработки) и избыточную.

В этом случае к прочносвязанной воде относится адсорбци­онная, удерживаемая молекулярно-силовым полем у поверхно­сти раздела дисперсных частиц — мицелл с окружающей средой и гидрофильными центрами белковых молекул, а также влага микрокапилляров с r < 10-7 м и механически удерживаемая.

Вода слабосвязанная необходима для обеспечения желатель­ных свойств и нормированного выхода продукта. Вода слабосвя­занная избыточная в основном отделяется при тепловой обработке мясопродуктов. Повышение влагосодержания фарша пу­тем увеличения доли слабосвязанной избыточной воды приво­дит к значительному ее отделению в процессе нагрева продукта и, следовательно, к снижению качества готовых изделий.

Считают, что ионная связь особенно важна для увеличения водоудерживающей способности мяса. Поскольку некоторые аминокислоты содержат две карбоксильные и две аминогруппы, то помимо блокированных пептидной связью имеются группы с кислой и щелочной реакцией, которые образуют анионы и ка­тионы. Кроме названных в молекуле аминокислот содержатся и другие функциональные группы, например гидроксильные (—ОН) и сульфгидрильные (—SH). Они имеют полярный харак­тер, вследствие чего также могут удерживать воду.

В зависимости от того, являются ли заряды соседствующих ионов одноименными или противоположными, они взаимно притягиваются либо отталкиваются. Известно, что количество зарядов в изоэлектрической точке (рН ~ 5,0) минимально. Мясо, нагретое при изоэлектрическом состоянии белков, характеризу­ется максимальным отделением бульона и минимальной водо­удерживающей способностью.

Изменение водоудерживающей способности в процессе на­грева соленой говядины (2 %) в зависимости от рН сырья, темпе­ратуры образца и греющей среды представлено на рис. 3 и 4 Нагрев проводили при температурах греющей среды 75, 100 и 145 °С до достижения в центре образца температур 35, 45, 50, 55, 65, 75, 90, 115, 125 и 135 °С.

Как видно из рис. 3, количество влаги, отделяемой при прессовании, зависит в большей степени от величины рН сырья и температуры образца и в меньшей — от температуры греющей среды. Максимальное количество влаги, выделяющейся из об­разца при прессовании (слабосвязанной), наблюдается у мяса с исходным значением рН 5,25 при нагреве до 75 °С. С увеличени­ем рН при нагреве мяса до одинаковой температуры, не превы­шающей 75 °С, количество слабосвязанной влаги снижается. Особенно резко это наблюдается в случае нагрева фарша до 35 и 45 °С при увеличении рН с 5,25 до 5,75. При нагреве мяса выше 75 °С закономерность отделения слабосвязанной влаги изменя­ется: при температуре образца 90 °С и выше количество ее возра­стает с увеличением рН.

При определении влияния температуры образца на измене­ние количества слабосвязанной влаги отмечено, что при нагреве соленого мяса при всех исследуемых значениях рН до температу­ры 45 °С наблюдаются некоторое уменьшение ее количества (см. рис. 3) и повышение содержания неотпрессованной влаги (см. рис. 4). По-видимому, процесс денатурации белков со­провождается повышением водосвязывающей способности, хотя и в небольшой степени. Это подтверждается данными, получен­ными П. Л. Приваловым и Г. М. Мревлишвили, которые свиде­тельствуют о том, что гидратация макромолекул действительно изменяется при денатурации, причем это изменение всегда по­ложительно — гидратация денатурированных макромолекул больше, чем нативных. Этот факт свидетельствует о тесной взаи­мосвязи между конформацией макромолекул и состоянием воды в прилегающих к ним слоях. Обычно этим обстоятельством пре­небрегают при рассмотрении изменений водосвязывающей спо­собности и конформационных превращений макромолекул в во­де, что вряд ли допустимо.

Нагрев образца до температуры от 45 до 50 оС вызывает резкое увеличение количества отпрессованной и снижение неотпрессо­ванной влаги.

Рис. 3. График зависимости количества отпрессованной влаги от температуры и рН исходного фарша

В интервале температур 50...55 °С количество отпрессованной и неотпрессованной влаги не изменяется. Это свидетельствует о том, что изменение водоудерживающей способности происхо­дит ступенчато. Дальнейшее повышение температуры до 65 °С при рН 5,25...6,00 и до 75 °С при рН 6,25...7,00 вызывает при прессовании значительное снижение количества неотпрессован­ной влаги и увеличение отпрессованной.

При температуре выше 65 (75) °С происходит дополнительное уплотнение структуры в результате образования дисульфидных сшивок и выпрессовывания влаги в процессе нагрева. При этом ведущая роль в формировании белкового каркаса мясопродукта принадлежит миозину.

Повышение температуры до 75 °С вызывает изменение зако­номерностей количества отпрессованной и неотпрессованной влаги на противоположные, что, по-видимому, означает завер­шение процесса коагуляции белков. Дальнейший нагрев фарша до 135 °С способствует снижению количества отпрессованной и увеличению неотпрессованной влаги. Интенсивность этих изме­нений зависит от рН сырья, температур образца и греющей сре­ды. Так, по достижении образцом температуры 90 °С потери мас­сы и снижение количества отпрессованной влаги превосходят соответствующие значения, достигаемые при температуре грею­щей среды 100 °С. Такое явление можно объяснить следующим образом: по достижении температуры 90 °С дезагрегация коллаге­на в обоих случаях пока еще незначительна, а продолжительность нагрева в интервале температур 75...90 °С существенно различает­ся и составляет 395 с при температуре греющей среды 100 оС про­тив 34 с при 145 °С. Таким образом, длительность тепловой обра­ботки при исследуемых режимах оказывает большее влияние, чем температура греющей среды. В целом снижение количества от­прессованной и увеличение неотпрессованной влаги могут быть объяснены развитием процесса дезагрегации коллагена.

Влияние рН мясного фарша. Кроме изменения структуры воды, денатурационных изменений мышечных белков и дезагрегации коллагена существенное влияние на изменение водоудерживающей способности оказывает рН сырья. Результа­ты исследований изменения рН мяса в процессе нагрева в зави­симости от температуры образца и первоначальной величины рН представлены на рис. 5.

На изменение рН в процессе нагрева мяса более сильное вли­яние, чем температура греющей среды, оказывают рН исходного сырья и температура образца. Несмотря на то что с повышением последней прирост рН возрастает (величина прироста зависит от рН исходного фарша), водоудерживающая способность его сни­жается, так как параллельно происходит сдвиг изоэлектрической точки фибриллярных белков к более высоким значениям рН.

Рис. 4. График зависимости количества неотпрессованной влаги от температуры и рН исходного фарша (температура греющей среды 145 °С)

Состав мясных и костных бульонов из мяса птицы и субпродуктов. Качественный состав бульонов, приготовляемых из мяса и мясопродуктов, одинаков, в него входят экстрактив­ные и минеральные вещества, белки, липиды, витамины. Белки представлены в основном глютином, который образуется в резуль­тате деструкции коллагена в условиях влажного нагрева. Белки мышечных волокон переходят в бульон в количествах, не превы­шающих 0,2 % массы мясного сырья. Эмульгированный жир со­держится в бульонах, приготовляемых из жирного мяса (грудинка, покромка), жирной птицы (утки, гуси), языков; количество его не превышает 0,8 % массы мясного сырья. Таким образом, основны­ми водорастворимыми компонентами мясных и костных бульонов являются экстрактивные, минеральные вещества и глютин. Коли­чественное содержание указанных компонентов в бульоне зависит от вида мясного сырья, использованного для варки.