ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ
МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ТЕХНОЛОГИЙ И УПРАВЛЕНИЯ
КОНТРОЛЬНАЯ РАБОТА № 1
ТЕХНОЛОГИЯ ПРОДУКТОВ
ОБЩЕСТВЕННОГО ПИТАНИЯ
Москва, 2011 год
ПЛАН ВЫПОЛНЕНИЯ РАБОТЫ:
1. Способ тепловой кулинарной обработки продуктов объемным нагревом.
2. Физическая сущность клейстеризации крахмала.
3. Изменение содержания прочно- и слабосвязанной воды в процессе тепловой обработки мяса.
4. Виды и прочность контактов между частицами и тиксотропия.
5. Задача № 1.
6. Задача № 2.
7. Задача № 3.
8. Задачи № 4.
9. Список используемой литературы
Вопрос № 1
Способ тепловой кулинарной обработки продуктов объемным нагревом
При доведении продуктов до состояния кулинарной готовности стремятся обеспечить такой режим тепловой обработки, при котором готовая продукция высокого качества получается с минимальными затратами.
Способы тепловой кулинарной обработки, применяемые на предприятиях общественного питания, основаны на определенных теплофизических и технологических принципах передачи тепла продукту: поверхностный нагрев (контактный); излучениями инфракрасного спектра (ИК-нагрев); объемный нагрев проникающим излучением сверхвысокой частоты (СВЧ-нагрев); комбинированный нагрев (ИК-нагрев в сочетании с поверхностным или СВЧ-нагревом).
В результате тепловой кулинарной обработки температура продукта повышается до 80... 100 оС, а в поверхностном слое при жарке — до 120... 130 °С. Движущей силой процесса при поверхностном нагреве служит разность температур между продуктом и греющей средой, а также между наружными и внутренними слоями продукта; при нагреве электромагнитными излучениями — ускорение движения атомов и молекул пищевых веществ.
Под действием тепловой энергии в продукте возникают такие сложные физико-химические процессы, как клейстеризация крахмала, денатурация белков, гидротермическая дезагрегация биополимеров (коллаген мяса, рыбы, протопектин растительных продуктов), образование новых вкусовых и ароматических веществ, изменение цвета продукта, разрушение витаминов и др. В результате протекания перечисленных, часто накладывающихся друг на друга процессов, в окружающую среду выделяются водорастворимые вещества и жиры; происходят потеря воды и уменьшение массы продукта (мясо, птица, рыба); поглощение воды продуктом и увеличение его массы (крупы, бобовые, макаронные и мучные изделия); разрушение некоторой части витаминов; переход в воду при варке витаминов, экстрактивных, минеральных и других веществ.
Способ тепловой кулинарной обработки продуктов объемным нагревом (токами сверхвысокой частоты)
Объемный нагрев в электрическом поле сверхвысокой частоты (СВЧ) основан на диэлектрических свойствах практически всех пищевых продуктов и кулинарных полуфабрикатов. В продукте, помещенном в поле СВЧ, происходит поляризация моле
кул и ионов воды и пищевых веществ, преодоление ими сопротивления, связанного с ориентацией этих молекул и ионов в направлении приложенного электромагнитного поля, и превращение электромагнитной энергии в тепловую. Тепловая энергия распространяется спонтанно по всему объему продукта, в результате чего он нагревается до 100 °С за несколько минут. Однако продукт при этом не достигает кулинарной готовности, так как физико-химические превращения пищевых веществ, в результате которых формируются вкус, запах и консистенция готового продукта, протекают во времени. В связи с этим СВЧ-аппараты (микроволновые печи) более эффективны при разогревании готовой охлажденной и замороженной пищи, а также в сочетании с другими видами нагрева.СВЧ-аппараты работают от обычной городской сети переменного тока, в магнетроне аппарата электрическая энергия преобразуется в электромагнитные колебания (излучения) сверхвысокой частоты. Затраты электроэнергии на это преобразование достаточно высоки.
Вопрос № 2
Физическая сущность клейстеризации крахмала.
Крахмал — один из продуктов фотосинтеза, протекающего в зеленых листьях растений. Он откладывается в растительных тканях, в форме своеобразных зерен, имеющих слоистое строение и размеры от долей до 100 мкм и более.
Различают клубневое крахмалсодержащее сырье (клубни картофеля, батата, маниока и др.) и зерновое (зерно кукурузы, пшеницы, риса, сорго, ячменя и др.) и в соответствии с этим клубневый и зерновой крахмалы.
При кулинарной обработке крахмалсодержащих продуктов крахмал проявляет способность к адсорбции влаги, набуханию и клейстеризации, в нем могут протекать процессы деструкции и агрегации молекул.
Интенсивность всех этих процессов зависит от происхождения и свойств самого крахмала, а также от технологических факторов — температуры и продолжительности нагревания, соотношения крахмала и воды, вида и активности ферментов и др.
Растворимость. Нативный крахмал практически нерастворим в холодной воде. На этом свойстве основан метод его выделения из растительных продуктов. Однако вследствие гидрофильности он может адсорбировать влагу в количестве до 30 % собственной массы. Низкомолекулярные полисахариды, в частности амилоза, содержащая до 70 глюкозных остатков, растворимы в холодной воде. При дальнейшем увеличении длины молекулы полисахариды могут растворяться только в горячей воде. Процесс растворения крахмальных полисахаридов протекает медленно из-за относительно большого размера молекул. Известно, что линейные полимеры перед растворением сильно набухают, поглощая большое количество растворителя, и при этом резко увеличиваются в объеме. Растворению крахмальных полимеров в воде также предшествует набухание.
Набухание и клейстеризация. Набухание — одно из важнейших свойств крахмала, которое влияет на консистенцию, форму, объем и выход готовых изделий из крахмалсодержащих продуктов. Степень набухания зависит от температуры среды и соотношения воды и крахмала. Так, при нагревании водной суспензии крахмальных зерен до 55 °С они медленно поглощают воду (до 50 %) и частично набухают, но вязкость не увеличивается. При дальнейшем нагревании суспензии (в интервале температур 60... 100 °С) набухание крахмальных зерен ускоряется, причем объем их увеличивается в несколько раз.
В центре крахмального зерна образуется полость (пузырек), а на его поверхности появляются складки, бороздки, углубления. Свойство крахмальных зерен расширяться под действием термической обработки с образованием внутренней полости связывают с тем, что внутри крахмального зерна (в точке роста) происходят разрыв и ослабление некоторых водородных связей между крахмальными цепями, которые в результате этого раздвигаются, что приводит не только к увеличению размеров крахмального зерна, но и к разрушению его кристаллической структуры. В процессе набухания крахмальных зерен часть полисахаридов растворяется и остается в полости крахмального зерна, а часть — диффундирует в окружающую среду.
Растворение полисахаридов при нагревании крахмала в воде подтверждается данными хроматографического анализа центрифугата крахмальной суспензии на колонках из окиси алюминия (рис. 1). Известно, что при пропускании раствора крахмальных полисахаридов через колонку амилопектин адсорбируется в верхней ее части, амилоза — в нижней. При последующем пропускании через колонки раствора йода амилопектин окрашивается в фиолетовый цвет, амилоза — в синий.
При нагревании крахмальной суспензии до 50 °С полисахариды практически не растворяются, а при 55 оС на колонке появляется зона амилозы, хотя и незначительной высоты, что указывает на растворение этого полисахарида и переход его из крахмальных зерен в окружающую среду. С повышением температуры нагревания суспензии количество растворенной амилозы возрастает, что подтверждается увеличением высоты зоны, окрашенной в синий и темно-синий цвета. Нагревание крахмальной суспензии при 80 °С вызывает растворение как амилозы, так и амилопектина.
Дисперсия, состоящая из набухших крахмальных зерен и растворенных в воде полисахаридов, называется крахмальным клейстером, а процесс его образования — клейстеризацией. Таким образом, клейстеризация — это изменение структуры крахмального зерна при нагревании в воде, сопровождающееся набуханием.
Процесс клейстеризации крахмала происходит в определенном интервале температур, обычно от 55 до 80 °С. Один из признаков клейстеризации — значительное увеличение вязкости крахмальной суспензии. Вязкость клейстера обусловлена не столько присутствием набухших крахмальных зерен, сколько способностью растворенных в воде полисахаридов образовывать трехмерную сетку, удерживающую большее количество воды, чем крахмальные зерна.
Рис. 1. Схемы хроматограмм полисахаридов пшеничного крахмала:
/—без нагрева; II- сухой нагрев до 120 °С; ///— сухой нагрев до 150 °С
Этой способностью в наибольшей степени обладает амилоза, так как ее молекулы находятся в растворе в виде изогнутых нитей, отличающихся по конформации от спиралей. Хотя амидоза составляет меньшую часть крахмального зерна, но именно она определяет его основные свойства — способность к набуханию и вязкость клейстеров.
В табл. 1 приведены данные о примерном содержании амилозы в крахмале различного происхождения, температуре его клейстеризации и степени набухания в горячей воде (90 °С), определяемой объемным методом, а также рассчитанные по вязкости коэффициенты замены одного вида крахмала другим при изготовлении клейстеров. При этом за единицу принимается вязкость клейстера картофельного крахмала 2%-ной концентрации.