Смекни!
smekni.com

Обоснование необходимости разработки информационного тезауруса для проектирования самолета и (стр. 2 из 3)

2 Этапы и процедуры проектирования самолетов и необходимость их автоматизации

Техническая необходимость в проектировании нового типа самолета возникает по двум основным причинам:

1. Происходит моральное устаревание существующих типов самолетов, а также появляются новые прочные облегченные материалы, новые технические решения и возможности, реализация которых обещает повышение технико-экономических показателей производства самолетов и их эксплуатацию, а также улучшение транспортной системы страны в целом.

2. Решение народно-хозяйственных и военных задач, ставит перед авиационной техникой условия безусловного выполнения ее главных функций в современных условиях – это экономичность, максимальная функциональность

(надежность, качество, эффективность, ремонтопригодность и долговечность), с возможностью взаимозаменяемости агрегатов, модернизации и доработки как в заводских условиях, так и на базах эксплуатации (то есть на боевом посту). Современные типы самолетов должны удовлетворять новым требованиям, например, перевозимых грузов, способность посадки на грунтовые аэродромы; для военных самолетов – возможность кратчайшего разбега по взлетно-посадочной полосе, либо вертикального взлета. Например, самолеты транспортной авиации типа «Руслан» удовлетворяют современным требованиям по перевозке крупногабаритных грузов, но имеют очень малую вероятность посадки на грунтовые взлетно-посадочные полосы и т.д.

Известно, что ключевым элементом процесса создания самолета является его проект, то есть разработка проекта как в ручном режиме, так и в автоматизированном. Разработать проект современного самолета – это значит разработать полный комплект проектно-конструкторской и технологической документации как при бумажной технологии, так и на машинных носителях, позволяющий осуществить создание самолета в металле и производить его эксплуатацию. Классически, техническая документация – это лишь конечный результат сложного и длительного процесса проектно-конструкторской деятельности создателей самолета, направленный на разработку проекта ранее не существовавшего объекта (самолета), системы и процесса. Поэтому всегда процесс проектирования любого объекта – это эволюционный цикл обновления.

Понятно, что современные проекты самолетов и другой сложной техники машиностроения, создать без использования систем автоматизации невозможно, поэтому степень автоматизации процессов проектирования во многом определяется не столько возможностями современных САПР, сколько возможностью формализации той или иной проектной задачи, то есть умением проектировщика дать достаточно строгую постановку задачи проектирования и четкий завершенный алгоритм ее решения, с использованием максимальных сведений о типовой конструкторской задаче, то есть использовании сведений о проектируемом изделии (самолете) – тезаурусе.

После определения цели проектирования, проектировщик, опираясь на информацию – тезаурус, а также творческие способности формирует главную идею, то есть концепцию будущего самолета, намечая возможные варианты (альтернативы) решения проектной задачи, используя систему автоматизации проектирования, адаптированную для решения конкретной проектной задачи.

После выбора варианта в современных условиях с использованием критериев функциональности и стоимости, строятся априорные математические и электронные (физические) модели, производится их функциональное описание, анализируются избыточные, недостающие и критические функции будущего самолета; определяются проблемы, требующие дополнительных научных исследований. Следующим крупным этапом является процесс исследования априорной модели, с проведением необходимых прочностных и других расчетов, расчетов технико-экономических и др. Завершающим результатом процесса проектирования (этапом проектирования) является анализ результатов исследований и выдача рекомендаций проектной организации для определения оптимального проектного решения и принятие решения на окончательную разработку проектно-конструкторской и технологической документации на изделие (самолет).

При проектировании самолетов, математическое моделирование, естественно, базируется на известных закономерностях прикладных авиационных наук, таких как «Аэрогазодинамика и динамика полета», «Теория принятия решений», «Теория полета», «Исследование операций» и других специальных науках, используемых при проектировании и расчете самолетов.

Соотношение математического и физического моделирования (электронного моделирования) определяет в значительной степени возможности формализации последующих этапов проектирования. Особенно, электронное моделирование предопределяет производство всех расчетов еще до создания проекта и изготовления опытного образца в металле. Так, например, если цель проектирования удается количественно выразить через критерий – функцию проектных параметров, то задачу принятия оптимального решения о конкретных значениях этих параметров можно свести к задаче отыскания такого сочетания параметров, при котором критерий достигает экстремального значения.

Таким образом, в общем процессе проектирования самолета имеется целая сеть проектных процедур, которые могут быть формализованы, с использованием информационного тезауруса в условиях автоматизированного проектирования конструкторско-технологических разработок самолета (САПР-КТРС).

3 Необходимость и проблемы декомпозиции конструкции самолета в процессе его автоматизированного проектирования

Самолет, как и любой другой технический объект машиностроения, является объектом проектирования и представляет собой сложную техническую систему, обладающую развитой иерархической структурой. При системном подходе решение задач определенного иерархического уровня требует строить всю иерархию системы – самолет. Здесь необходимо рассматривать системы и подсистемы самолета более высоких иерархических уровней, например, транспортную систему и ее подсистему – авиационно-технический комплекс. В свою очередь самолет рассматривается как исходная (базовая) подсистема, где можно выделить по уровням иерархии такие подсистемы, как планер, силовые установки, снаряжение, оборудование, авионику, систему-шасси и т.д. Каждая из этих подсистем при проектировании подвергается декомпозиции, то есть расчленяется на ряд еще более мелких подсистем (составляющих), элементов, агрегатов и узлов.

Иерархические уровни связаны между собой двумя типами отношений.

Первый тип характеризует структуру системы и упорядочивает состав его элементов, блоков, агрегатов и связь составляющих конструкции между собой. Вместе с тем всякая структура создается для выполнения определенных функций (полезных действий, состояний или свойств). Например, конструкция крыла выполняет функции: «передавать нагрузки», «создавать силу (подъемную)», «размещать топливо» и др.

Таким образом, все элементы подсистем и их отдельные элементы по уровням иерархии связаны между собой функциональными соотношениями,

Каждому иерархическому уровню соответствует свой перечень задач, решение которых необходимо для принятия соответствующих этому уровню проектных решений, а тем более в условиях функционирования САПР-КТР при создании конструкции самолета. Поэтому при автоматизированном проектировании конструкции самолета важным, с точки зрения формализации аспектом, является его иерархическая структура и вытекающая из нее многоэтапность проектирования.

Здесь согласуются действия с подготовкой производства самолета, то есть подготовки предпосылок создания средств технологического оснащения, технологических процессов и другой проектно-технологической продукции, а также разработка проекта типовых технологических функций для организации информационного тезауруса по конструкции и технологии изготовления самолета.

4 Проблемы моделирования и типы проектных моделей самолета

Понятие формализации проектирования включают описание объекта и процесса его проектирования с помощью графического языка, чисел, букв, кодов и других символов, то есть сочетание идеографической совокупности функций проектных решений и функции технологических, и др. Следовательно, для описания детализации конструкции, каждому уровню иерархии ставится степень соответствия знаков, набор символов и обозначений, а также проектно-технологических функций, с помощью которых осуществляется это описание. То есть структуру самолета, его форму, размеры можно описать, например с помощью функций или конечного числа таких символов, которые называются параметрами. Свойства же конструкции самолета или его подсистем (агрегатов, готовых изделий и т.п.) можно описать с помощью другого набора символов, называемого характеристиками, которые в свою очередь можно выразить через функцию (как полезное свойство, состояние или действие).

Декомпозиция (расчленение) системы на иерархические уровни облегчает решения отдельных задач, например, задачи подготовки производства, которая является производной от процесса проектирования самолета и базовой структуры процесса производства. Однако, здесь требуется учет всех существующих связей между расчлененными (иерархическими) уровнями, с целью упрощения и оптимизации процессов подготовки производства; проектирование средств технологического оснащения, технологических процессов на изготовление и др.

Рассмотрим характер связей для этапов разработки технического задания (ТЗ), разработки технического предложения, эскизного проекта, математической и электронной моделей (рис.1.3).

Здесь прямые связи являются выходной информацией – результатом проектирования (обозначены сплошными линиями) для верхнего уровня и входной информацией – для нижнего уровня. Обратные же связи – наоборот (обозначены пунктирными линиями). Для верхнего уровня прямые связи представляют собой искомые переменные – оптимизируемые параметры, для нижнего уровня, как бы, дисциплинирующие условия, что является основой для формулирования критериев и ограничений при решении задач проектирования данного условия. Так, например, прямые связи между уровнями разработки ТЗ и технического предположения – это переменные, характеризующие потребные летно-технические и другие характеристики, регламентируемые техническое задание на проектирование. Прямые связи между уровнем разработки технического предложения и уровнем разработки эскизного проекта отражают решения по проекту, которые необходимо принять, прежде чем приступить к эскизному проектированию. Они включают в себя численное, графическое, морфологическое и функциональное описание, подтверждающее возможность или уровень выполнения технического задания и т.д.