Смекни!
smekni.com

Проектирование технологии ремонта гидроцилиндров с использованием полимерных материалов (стр. 7 из 11)

- коэффициент Пуассона полимера;

, (4.13.)

где Тс - температура склеивания полимера;

Тр - рабочая температура.

Для композиций на основе акриловых пластмасс (бутакрила и АСТ-Т) были определены следующие необходимые физические характеристики:

1/град, Тс=70о С, ЕП = 1,4*109 Н/м2,

Для композиции на основе эпоксидной смолы ЭД-20 физические характеристики следующие:

1/град, Тс = 70о С, ЕП = 1,4*109 Н/м2,

Внутренние “замороженные” напряжения в полимерном покрытии при температуре 20о С составляют:

Гидроцилиндры с полимерными покрытиями по условиям работы могут находиться при температуре -60о С. Внутренние напряжения в полимерных покрытиях при этом будут составлять:

Надежность адгезионного соединения полимерного покрытия с металлом будет обеспечена при выполнении соотношения

(4.14.)

В случае применения композиций на основе акриловых и эпоксидных смол имеем следующие данные:

19,3 МПа + 7 МПа > 18,0 МПа;

18,6 МПа + 7 МПа > 18,0 МПа,

т.е. при температуре -60о С отслоения полимерного покрытия на основе акриловых или эпоксидных смол от поверхности металла не произойдет.

4.5. Промышленные испытания износостойкости гидроцилиндров с полимерными покрытиями.

Испытания были проведены на ряде предприятий. Установлено, что допустимая величина износа покрытия без потери герметичности поршня составляет 0,2 мм.

Зависимость износа покрытия от времени наработки изделия (пути трения), представленная на рис.4.2., аппроксимируется уравнением

(4.15.)

где

- величина износа покрытия в исследуемый момент времени;

- величина изменения диаметра цилиндра в режиме установившегося износа;

- безразмерный коэффициент, выражающий интенсивность износа;

L - путь трения, м.

Значения исследуемых параметров следующие: при скорости 0,5 м/с

мм, -
L*105 = 8-10 м.

Уравнение зависимости износа от времени наработки можно решить относительно пути трения и по допустимой величине износа цилиндра определить возможное время наработки.

Опыт эксплуатации гидроцилиндров с полимерными покрытиями показывает, что износостойкость покрытия не уступает износостойкости металлических поверхностей, а износостойкость резиновых уплотнителей увеличивается в 7-10 раз.

5. Проектирование участка восстановления гидроцилиндров.

5.1. Организация работ на участке.

Работа на участке может быть организована следующим образом. После мойки гидроцилиндры поступают на участок ремонта и испытания гидроцилиндров, где складываются в специальный контейнер для ожидания ремонта. Затем на стенде разборки, ремонта, сборки гидроцилиндры разбираются, проводится их дефектовка. В случае необходимости гидроцилиндры подвергают мелкому ремонту (замена уплотнительных колец и т.д.). При износе более допустимого штоки направляются на восстановление на соответствующие участки. Отремонтированные гидроцилиндры направляются на испытания, где они проходят проверку при работе под нагрузкой. В случае, если параметры не удовлетворяют техническим требованиям, цилиндры возвращаются для повторного ремонта. Если же параметры полностью удовлетворяют требованиям, гидроцилиндры направляются на склад отремонтированной продукции.

5.2. Расчет производственной площади участка ремонта гидроцилиндров.

Подбор оборудования и инвентаря.

Таблица 5.1.

N

п/п

Оборудование и инвентарь

Марка или модель

Кол-во

Требуемые размеры, мм

Площадь м2

1

2

3

4

5

6

1

Стенд для разборки и сборки гидроцилинд-ров

собс.изгот.

1

300 х 920

2,76

2

Моечная ванна

собс.изгот.

1

2500 х 1000

2,5

3

Дефектовоч-ный стол

собс.изгот.

1

2500 х 1000

2,5

4

Стенд для испытаний гидроцилиндров

КИ-4815М

1

1640 х 875

1,44

5

Контейнер для гидроцилинд-ров, ожидающих ремонта

собс.изгот.

1

2000 х 1000

2

6

Бункер для утильных деталей

Р-938

1

1500 х 1000

1,5

7

Верстак слесарный

ОРГ-1468-01-060А

2

1500 х 800

1,2

8

Приспособле-ние для заливки полимерного материала

собс.изгот.

1

1000 х 1000

1

9

Термошкаф

1

1000 х 1000

1

10

Шкаф для хранения материа-

ОРГ-1468-07-040

1

1000 х 500

0,5

лов и измерительного инструмента

11

Стеллаж для хранения деталей и зап. частей

ОРГ-1468-05-230А

1

1500 х 500

0,75

12

Ларь для песка

ОРГ-1468-03-320

1

500 х 500

0,25

13

Бункер для мусора

собс.изгот.

1

500 х 500

0,25

14

Ларь для обтирочного материала

ОРГ-1468-07-090А

1

1000 х 500

0,5

Итого:

20,65

Принимаем площадь, занятую оборудованием участка, 20 кв.м.

Площадь участка определяем по формуле:

F = C . Fo, (5.1.)

где С - коэффициент плотности оборудования, равен 5;

Fo - площадь, занимаемая оборудованием участка.

F = 20 . 5 = 100 м2.

Принимаем размеры участка 12,5 x 8 метров.

6. Энергетические затраты при осуществлении проекта.

Для того, чтобы определить количество потребляемой электроэнергии, необходимо сначала определить активную мощность токопотребителей по формуле:

Na = Kc . уст, (6.1)

где: Kc - коэффициент спроса, учитывающий время работы токоприемников и их загрузку;

Nуст - суммарная установленная мощность токопотребителей, кВт.

Na = 0,55 . 30 = 16,5 кВт.

Годовой расход электроэнергии для силового потребления определяют с учетом действительного годового фонда времени и коэффициента загрузки (по времени):

Nг1 = Nа. Фд . n . Кз, (6.2)

где: Фд - годовой действительный фонд времени работы токопотребителей для одной смены (равен 1802,69 часа);

n - число смен;

Кз - коэффициент загрузки токопотребителей по времени (принимаем 0,8).

Nг1 = 16,5 . 1802,69 . 1 . 0,8 = 23795,5 кВт.ч

По этой же формуле рассчитывают годовой расход электроэнергии на освещение участка. Освещается участок лампами типа ЛДЦ по 80 Вт каждая, мощность всех ламп составит: