Смекни!
smekni.com

Проектирование электропривода пассажирского лифта (стр. 8 из 9)

– из точки суммарного приведённого момента инерции проводим лучи, соединяющие полученные точки на оси угловой скорости;

– параллельным переносом для каждого значения угловой скорости сносим в правый квадрант построенные лучи.

– Построим электромеханическую характеристику двигателя во втором квадранте и найдем точки ее пересечения с границами участков, на которые разбиваем кривую динамического момента.

– из каждой точки пересечения опускаемся перпендикуляры на ось моментов;

– из начала координат циркулем сносим получившиеся точки на ось угловой скорости;

– из точки суммарного приведённого момента инерции проводим лучи, соединяющие полученные точки на оси угловой скорости;

Для каждого значения

в первом квадранте откладывается величина тока двигателя
, которая принимается постоянной в течение времени
и приращения скорости
. В конце построений кривые заменим плавными линиями
и
.

Все рисунки представлены в приложении 2.

При пуске

с, при торможении
с

Графики переходных процессов при спуске лифта отличаются величиной статического момента, что скажется на длительности динамических режимов, сохранив их характер.


9. Проверка двигателя

Проверку двигателя по нагреву осуществляют сравнивая ток статора с номинальным током двигателя. Величину току статора определим по формуле:

(9.1)

где I, Mн, sн – соответственно номинальные значения тока статора, момента и скольжения;

M, s – текущие значения момента и скольжения двигателя в установившемся режиме работы.

I0 – ток холостого хода, А.

Ток в одной из фаз обмотки статора определим по формуле:

, А

А

Подставим значения в уравнение (9.1):

Номинальный ток при составляет Iн=8.9 А.

Выбранный двигатель имеет номинальный ток

Выбранный нами двигатель подходит по нагреву.

Опираясь на нагрузочную диаграмму, рассчитаем эквивалентный момент:

Выбранный двигатель имеет номинальный момент

больший по сравнению с эквивалентным моментом
. Выбранный нами двигатель устраивает по перегрузке.

Определим реальную продолжительность включения из нагрузочной диаграммы:

.

10. Расчет энергетических показателей ЭП

Потери энергетической мощности имеют место в установившихся и переходных процессах /6/, /5/.

В установившемся режиме потери:

, Вт,

где

– коэффициент потерь, характеризующий отношение постоянных потерь к переменным при номинальной нагрузке (для лифтовых АД
=(0.5…0.9)=0.8

Определим значения сопротивлений R1, R2’ , xk из формул :

;

Приняв R1= R2’, получим:

Определим номинальные токи ротора

отдельно для высокоскоростной и низкоскоростной обмоток с соответствующими параметрами обмоток:

1) для высокоскоростной обмотки:

, А.

2) для низкоскоростной обмотки:

, А.

Определим токи ротора

отдельно для высокоскоростной и низкоскоростной обмоток в установившемся режиме на подъеме:

1) для высокоскоростной обмотки:

, А.

2) для низкоскоростной обмотки:

, А.

Определим токи ротора

отдельно для высокоскоростной и низкоскоростной обмоток в установившемся режиме на спуске:

1) для высокоскоростной обмотки:

, А.

2) для низкоскоростной обмотки:

, А

где

соответственно скольжение при подъеме и спуске лифта.

Определим переменные потери в номинальном режиме работы для высокоскоростной обмотки.

Вт

Определим переменные потери в номинальном режиме работы для низкоскоростной обмотки.

Вт

Определим потери мощности для высокоскоростной обмотки:

1) при подъеме:

, Вт.

2) при спуске:

, Вт.

Определим потери мощности для низкоскоростной обмотки:

1) при подъеме:

, Вт.

2) при спуске:

, Вт.

Умножив потери мощности на соответствующие временные промежутки установившегося режима, получим потери энергии в установившемся режиме:

, Дж,

где tП1, tC2 – соответственно время установившегося режима при подъеме и спуске на высокоскоростной обмотке; tП3, tC4 – соответственно время установившегося режима при подъеме и спуске на низкоскоростной обмотке, с.

, Дж.

Определим потери энергии в переходных режимах.

Потери при пуске на холостом ходу:

, Дж.

Для пуска под нагрузкой:

, Дж,

где

- средний пусковой момент двигателя, Н*м; кm - перегрузочная способность двигателя, кп – кратность пускового момента.

, Н.м.

Определим потери энергии для пуска под нагрузкой отдельно при пуске вверх dA1 и пуске вниз dA2 кабины:

, Дж,

, Дж.

При рекуперативном торможении происходит преобразование запасенной кинетической энергии вращающегося ротора в электроэнергию, за вычетом потерь отдается в сеть.

В первом приближении выделяющаяся энергия в режиме рекуперации без учета потерь на электромеханическое преобразование составят

, Дж,

где ω01 и ω02 – соответственно синхронные скорости высокоскоростной и низкоскоростной обмоток, 1/с.

, Дж.

Потери энергии при рекуперативном торможении:

, Дж,