Смекни!
smekni.com

Однозонный тиристорный электропривод постоянного тока (стр. 3 из 5)

Рисунок 5.2 – Структурная схема замкнутого контура тока


5.1.2 Расчёт параметров регулятора тока якоря

Рисунок 5.3 – Регулятор тока якоря

Коэффициент регулятора тока

. (5.1.2.1)

Задаемся величиной ёмкости конденсатора в цепи обратной связи операционного усилителя регулятора тока

Ф

Сопротивление резистора в цепи обратной связи операционного усилителя регулятора тока

Ом . (5.1.2.2)

Сопротивление в цепи датчика тока

Ом. (5.1.2.3)

Чтобы в установившемся режиме сигнал РТ не изменялся, нужно, чтобы входной ток не поступал в канал ОС.

, считаем

Ом. (5.1.2.4)

Коэффициент усилителя датчика тока якоря определён в разделе 3.

Принимаем R1 = 5 кОм, тогда

R2 = R1∙kудтя = 5∙66.6=333 кОм. (5.1.2.5)

5.2 Контур ЭДС

5.2.1 Оптимизация контура ЭДС

РЭ – регулятор ЭДС;

ЗКТ – замкнутый контур тока;

ЭМ – электромеханическая часть двигателя;

ДЭ – датчик ЭДС.

Тяц – постоянная времени якорной цепи двигателя, с которой снимается сигнал обратной связи по ЭДС.

Рисунок 5.4 – Структурная схема контура ЭДС

Допущение:

Ic = 0 (Х.Х.)

В контуре есть два звена с малыми постоянными времени, которые включены последовательно и поэтому могут быть преобразованы к одному звену с малой постоянной времени, равной их сумме

(5.2.1.1)

где Тmэ – малая постоянная времени контура ЭДС, c.

Тmэ = Тт + Тяц¢ (5.2.1.2)

Передаточная функция разомкнутого контура ЭДС, настроенного на модульный оптимум

, (5.2.1.3)

откуда

. (5.2.1.4)

Получил пропорциональный регулятор (П-регулятор) ЭДС.

С таким регулятором система будет астатичной по заданию (при отсутствии возмущающего воздействия) и статичной по возмущению.

Передаточная функция замкнутого контура ЭДС

. (5.2.1.5)

Таким образом, в замкнутой передаточной функции контура ЭДС присутствует форсирующее звено.

Из-за наличия инерционности в датчике ЭДС переходный процесс будет идти с большим перерегулированием. Для уменьшения перерегулирования на вход системы включаю фильтр с постоянной времени, равной инерционности датчика.

Передаточная функция фильтра

.

(5.2.1.6)

Структурная схема замкнутого контура ЭДС имеет вид:



Рисунок 5.6 – Структурная схема замкнутого контура ЭДС

5.2.2 Расчет параметров регулятора ЭДС с применением датчика напряжения

Рисунок 5.7 – Регулятор ЭДС

Коэффициент датчика напряжения

. (5.2.2.1)

Коэффициент передачи регулятора ЭДС

. (5.2.2.2)

Задаемся ёмкостью в цепи датчика напряжения Сдн = 1 мкФ.

Сопротивление в цепи датчика напряжения:

если RIдн = RIIдн = 0,5∙Rдн, то
.

Ом. (5.2.2.3)

(5.2.2.4)

Сопротивление в цепи обратной связи операционного усилителя регулятора напряжения:

Rоэ = kрэ×Rдн = 0.547×

= 129.3 кОм. (5.2.2.5)

Сопротивление в цепи задания ЭДС находим из условий установившегося режима:

, Iзэ = Iдн, т.е. Uзэmax = Uднmax = 10 В, следовательно

Rзэ = Rдн =129.3 кОм. (5.2.2.6)

Ёмкость фильтра в цепи определяем из условия

если RIзэ = RIIзэ = 0,5∙Rзэ, то
.

При Rзэ = Rдн Сф = Сдн = 1 мкФ.

Сопротивление резистора токовой компенсации находим из условий режима стопорения двигателя: Ед = 0 , Uдэ = 0.

.

Uдт = I×kдт, Uдн = Uд×kдн = I× Ra×kдн,

кОм. (5.2.2.7)

Сопротивления резисторов делителя

. Считая kпр = 1 и принимая R3 = 1 кОм, выражаю R4

кОм. (5.2.2.8)

Ограничение выходного сигнала регулятора ЭДС осуществляется двумя встречно включенными стабилитронами VD1 и VD2 . Поскольку выходной сигнал регулятора ЭДС является сигналом задания на ток, то его ограничение приводит к ограничению тока двигателя на уровне максимально допустимого.

Падение напряжения на стабилитронах принимаем ΔUст = 1 В, максимально допустимое напряжение задания на ток Uзтmax = 10 В.

Тогда напряжение на стабилитронах будет равным

UVD1 = UVD2 = Uзтmax – ΔUст = 10 –

1 = 9 В. (5.2.2.9)

6 РАСЧЁТ ПАРАМЕТРОВ РЕГУЛЯТОРА ТОКА ВОЗБУЖДЕНИЯ

6.1 Оптимизация контура тока возбуждения

Так как привод однозонный, то оптимизацию контура тока возбуждения проводим для точки Фн.

РТВ – регулятор тока возбуждения;

ТПВ – тиристорный преобразователь обмотки возбуждения;

ОВ – электрическая цепь обмотки возбуждения;

МЦ – магнитная цепь обмотки возбуждения;

ДТВ – датчик тока возбуждения.

Рисунок 6.1 – Структурная схема контура тока возбуждения

Проводим оптимизацию контура тока на модульный оптимум. Для разомкнутой системы:

. (6.1.1)

Передаточная функция регулятора тока возбуждения

, (6.1.2)

где kртв – коэффициент регулятора тока.

Получаем пропорционально-интегральный регулятор (ПИ-регулятор) контура тока возбуждения.

6.2 Расчёт параметров регулятора тока возбуждения

Рисунок 6.2 – Принципиальная схема стабилизации тока возбуждения

Коэффициент тиристорного преобразователя цепи возбуждения

, (6.2.1)

где Ed – максимальная выпрямленная ЭДС преобразователя цепи возбуждения;

α – номинальный угол управления преобразователя.

В. (6.2.2)

. (6.2.3)

. (6.2.4)

. (6.2.5)

Определяем коэффициент регулятора тока возбуждения

, (6.2.6)

где TВ∑ - электромагнитная постоянная времени.

TВ∑ = Tв + Tвт = 0.624 + 0.062= 0.686. (6.2.7)

Задаюсь величиной емкости конденсатора в цепи датчика тока возбуждения