Смекни!
smekni.com

Разработка автоматической системы управления водогрейным котлом КВГМ-100 (стр. 2 из 22)

Производительность котельной: по перегретой воде – 400 Гкал/час и по пару – 155 Гкал/час.

1.1.3 Описание технологического процесса производства теплофикационной воды

1.1.3.1 Химводоочистка

В состав химводоочистки промкотельной входят: осветлители, блок осветлительных фильтров, блок Na-катионитовых фильтров I и II ступени, NaCl-ионитовый фильтр.

Источниками водоснабжения химводоочистки является река Оскол или техническая вода, подаваемая с центральной водоподготовки.


Рис.1 Функциональная схема подачи воды на предприятии

· Блок осветлительных фильтров:

Исходная вода насосами Д-320-50: а при давлении в трубопроводе более 4 кгс/см2 минуя их, последовательно подается на подогреватели технической воды и осветлитель ВТИ-400. Из осветлителя вода поступает в баки известково-коагулированной воды, оттуда насосами известково-коагулированной воды Д-320-50 подается на осветлительные механические двухкамерные фильтры.

Эксплуатация осветлительных фильтров

Блок осветлительных (см. рис. 2) фильтров состоит из 3-х двухкамерных фильтров диаметром 3400 мм, загруженных дробленым антрацитом. Высота загрузки 1000 мм в каждой камере.

Фильтр состоит из следующих элементов: корпуса двух нижних и двух верхних распределительных устройств, трубопроводов, запорной арматуры, КИП и фильтрующей загрузки.


Рис.2 Схема осветлительного фильтра

Корпус фильтра цилиндрический, сварной из листовой стали, снабжен двумя лазами. Внутри фильтр разделен металлическим днищем на 2 камеры: верхнюю и нижнюю. Один лаз расположен в верхней камере и один - в нижней. Лазы в нижней и верхней камерах предназначены для загрузки фильтрующего материала в камеры, ревизии и ремонта верхнего и нижнего распределительных устройств, а также периодического осмотра состояния поверхности фильтрующего материала в камерах. Корпус фильтра рассчитан на избыточное давление 6 кгс/см2, превышать которое запрещается.

0бе камеры соединены для выравнивания давления анкерными трубами, выполняющими также роль воздухоотводчиков из нижней камеры в верхнюю. На дно каждой камеры установлена трубчатая дренажная система, изготовленная полностью из нержавеющей стали со щелями шириной приблизительно 0,4 мм, которая служит для отвода осветленной и подвода взрыхляющей воды, а также подачи воздуха при промывке. Особенности эксплуатации двухкамерных осветлительных фильтров состоит в том, что обе камеры включают в работу и останавливают на промывку одновременно, т. к. обе камеры во избежание повреждения промежуточного днища должны всегда находиться под одинаковым давлением.

Принцип работы осветлительных фильтров

Осветление воды в осветлительных фильтрах осуществляется в процессе фильтрования ее через слой фильтрующего материала и достигается в результате механического задержания взвешенных веществ на поверхности фильтрующего слоя, особенно после образования на нем пленки из грубодисперсной взвеси и их прилипания к поверхности зерен материала. Но наряду с прилипанием взвешенных частиц к зернам фильтрующей загрузки под действием гидродинамических сил потока, происходит отрыв ранее прилипших частиц, причем с накоплением осадка интенсивность этого процесса увеличивается.

По мере загрязнения фильтрующего слоя уменьшается скорость фильтрования и производительность фильтра. При достижении максимально допустимого загрязнения, характеризуемого предельно допустимой потерей напора, или при появлении в осветленной воде взвешенных веществ (снижении ее прозрачности) фильтр включают на промывку. Отключение осветлительных фильтров производится при увеличении потери напора в фильтре до 1,0 кгс/см2 или при снижении прозрачности воды менее 40 см по шрифту.

· Блок Na-катионитовых фильтров.

Далее осветленная вода поступает на Na-катионитовые фильтры I ступени, оттуда вода поступает через бак в подпиточный деаэратор теплосети.

Эксплуатация Na-катионитовых фильтров

Блок Na-катионитовых фильтров (см. рис. 3) состоит из 3-х фильтров 1-ой ступени; 2-х фильтров 2-ой ступени. Фильтр имеет диаметр 3400 мм. Na-катионитовые фильтры загружены сульфоуглем на высоту 2500 мм.

Фильтр состоит из следующих элементов: корпуса, нижнего и верхнего распределительных устройств, подводящих и отводящих трубопроводов, запорной арматуры, КИП пробоотборных устройств и фильтрующей загрузки. Корпус фильтра цилиндрический, сварной, из листовой стали, снабжен двумя лазами. Верхний лаз предназначен для загрузки фильтрующего материала, ревизии и ремонта верхнего распределительного устройства, а также для периодического осмотра состояния поверхности фильтрующего материала. Нижний лаз предназначен для монтажа нижних распределительных устройств, их периодической ревизии и ремонта. Корпус фильтра рассчитан на избыточное давление 6 кгс/см2., превышать которое запрещается.

Верхнее распределительное устройство представляет собой трубчатую систему типа "паук" с отверстиями и служит для подвода обрабатываемой воды и регенерационного раствора, а также для отвода воды при взрыхлении катионита. Нижнее распределительное устройство представляет собой трубчатую систему со щелями приблизительно 0,4 мм и служит для равномерного распределения по всему сечению фильтра проходящей через него воды, отвода умягченной, отмывочной воды я регенерационного раствора, а также для подвода воды для взрыхления катионита.

Рис. 3 Схема Na-катионитового фильтра

Дренажные и распределительные устройства фильтров должны быть установлены горизонтально с отклонениями ± 2 мм на 1 м, но не более ± 5 мм на всю длину распределительных трубок. Фронт фильтров оборудован трубопроводами, запорной арматурой, пробоотборными устройствами для отбора проб поступающей и обработанной воды/манометрами на входном и выходном трубопроводах фильтров и расходомерами на трубопроводах, подающих воду на фильтр для обработка и взрыхления. После гидравлического испытания фильтра его днище бетонируют гидротехническим бетоном 1:3:6 с верхней цементной оттяжкой состава 1:3, высотой 50 - 60 мм и железнением поверхности. При использовании цемента марки "400" и выше заполняют битумом Б-V с наполнителем антрацитом крупностью до 25 мм при верхней стяжке, высотой 50-60 мм. из мастики битуминоль марка Н-2. В фильтр, предварительно частично заполненный водой, гидротранспортером или вручную загружают фильтрующий материал и, после повторного гидравлического испытания проводят взрыхляющую промывку для удаления мелочи и грязи; после чего фильтр включают в работу.

Процесс обработки воды

Процесс обработки воды заключается в последовательном прохождении воды через Na-катионитовые фильтры, где происходит умягчение воды. Умягчение воды катионированием осуществляется в процессе фильтрования ее через слой сульфоугля, частицы которого содержат катион натрия, способный к объемному разделению на накипеобразующие катионы кальция и магния. В результате этого в профильтрованной умягченной воде содержатся лишь натриевые соли, обладающие большой растворимостью и не образующие отложений на внутренней поверхности теплообменных аппаратов и парогенераторов.

Указанные реакции обмена могут быть представлены следующими уравнениями, где буквой R обозначен сложный комплексный анион катионита.

Ca (HCO3)2 + 2NaR = CaR2 + 2NaHCO3

Mg (HCO3)2 + 2NaR = MgR2 + 2NaHCO3

CaCl2 + 2NaR = CaR2 + 2NaCl

MgCl2 + 2NaR = MgR2 + 2NaCl

CaSO4 + 2NaR = CaR2 + Na2SO4

MgSO4 + 2NaR = MgR2 + Na2SO4

Как видно из уравнений, в процессе умягчения изменяется не только солевой состав, но и состав катионита.

Прошедшая через Na-катионитовые фильтры вода содержит только NaCl и частично NaHCO3, Na2SO4.

1.1.3.2 Деаэрирование воды

Химочищенная вода с помощью насосов Д-320-70 подается в деаэраторы паровых котлов.

Вакуумный деаэратор ДВ-100 (см. рис. 4) иначе термический деаэратор работают под давлением ниже атмосферного, что составляет –0,8 кгс/см2.

Термическая деаэрация воды основана на использовании закона Генри (закон о растворимости газов в жидкости). Согласно этому закону концентрация какого-либо газа, растворенного в жидкости, прямо пропорционально зависит от концентрации газа в парогазовой смеси над жидкостью. Таким образом, если концентрация газа в парогазовой смеси падает до нуля, то и растворимость его в жидкости также снижается до нуля.

Концентрация газа в смеси определяется его парциальным давлением, т.е. давлением, которое он имел бы, если бы один занимал весь рассматриваемый объем. В итоге можно выразить закон Генри так: растворимость газа в воде прямо пропорциональна его парциальному давлению над водой.

Кипение жидкости происходит при такой температуре, при которой давление паров жидкости по величине равно полному давлению над кипящей водой, и тогда парциальные давления газов в парогазовой смеси над кипящей водой практически близки к нулю, т.е. согласно закону Генри, растворимость газов в кипящей воде равна нулю.

Нулевая растворимость газов может быть достигнута при любой температуре кипения, а значит и при температуре кипения ниже 1000С. Таким образом, деаэрацию воды можно осуществить при давлении ниже атмосферного, т.е. в вакууме.

В вакуумном деаэраторе 90-95 % кислорода выделяются из воды в виде пузырьков, остальная часть – путем диффузии.