Смекни!
smekni.com

Разработка автоматической системы управления водогрейным котлом КВГМ-100 (стр. 8 из 22)

Для нахождения неизвестных коэффициентов воспользуемся методом наименьших квадратов.

Априорно известно, что

, (1.1)

т.е. (1.2)

(1.3)

(1.4)

Возведя в квадрат и просуммировав по всем дискретным значениям получим:

(1.5)

- сумма квадратов отклонений температур по всем дискретным значениям. Программа на языке СИ, приведенная в (приложении 7), находит минимум функции F(К2,Т) и в качестве результата выдает искомые коэффициенты.

К2=0,017 Т=50 мин.

Программа моделирования переходного процесса в системе и нахождения оптимальных настроек регулятора позволяет наглядно продемонстрировать качество переходного процесса, как при оптимальных настройках, так и при настройках, отличных от оптимальных. В качестве начального условия для моделирования изменения температуры воды примем исходную температуру 00С, в качестве задания – температура 2000С без ограничения по скорости нагрева. Оптимальными настройками для нашей системы являются:

Кп=54,7

Ки=1,8

Можно определить значения коэффициентов к2 – к5, то есть степень влияния сигналов автоподстройки на величины параметров настройки регулятора. Принимая во внимание то, что автоподстройка осуществляется по изменению величины одного и того же сигнала, а следовательно значения сигналов на входах Х2 – Х5 будут одинаковы рассчитаем:

((1.6) – (1.9))
1.4.3 Описание параметров настройки

К2 – К5 – масштабные коэффициенты, определяющие степень влияния сигналов автоподстройки соответственно на параметры: ∆, ТМ, КП, ТИД);

Н3, Н4 – соответственно порог срабатывания и гистерезис нуль-органа;

∆ - зона нечувствительности;

КП – коэффициент пропорциональности;

ТИД – постоянные времени соответственно интегрирования и дифференцирования;

ТМ – коэффициент, обычно устанавливаемый равным времени перемещения исполнительного механизма, соответствующего 100%-му изменению регулируемого параметра;

ТК – постоянная времени динамической балансировки алгоритма.

1.5 Разработка алгоритма работы котла КВГМ-100

1.5.1 Описание алгоритма работы

Технологический процесс работы котла КВГМ-100, состоит из нескольких этапов. Следовательно, и сама программа будет работать, тоже в несколько этапов.

Алгоритм работы контроллера Р-112 можно представить в виде:

· Регулятора воздуха;

· Регулятора разрежения в топке котла.

Регулятор воздуха. С помощью ключа на пульте управления дискретный сигнал подается на дискретный вход контроллера "Ремиконт – 112". Откуда подается на 6 вход алгоблока 2.8 (43 ПЕР) и инверсно на 7 вход этого же алгоблока. Согласно логике работы алгоблока 43 ПЕР, при наличии логической единицы на 6 входе включается 2 вход алгоблока, который в свою очередь подключается к аналоговому выходу (11) этого алгоблока. При наличии логической единицы на 7 входе, подключается 3 вход алгоблока к аналоговому выходу (11). Аналоговые входа 2 и 3 масштабируются с помощью коэффициентов К2 и К3. Поэтому имеется возможность масштабировать сигнал по давлению газа поступающий с датчиков давления в соответствии с количеством выбранных горелок (1 или больше).

Отмасштабированный сигнал давления газа представляет собой задания по давлению воздуха для регуляторов 2.7(11 РИС) и 2.8(02 РАН). Сигнал заводится на 2-е входа регуляторов с инвертированием.

В алгоблоке 2.7(11 РИС) инвертированный сигнал по давлению воздуха суммируется с реальным значением давления воздуха поступающего с датчика давления и формирует сигнал рассогласования

в соответствии с которым формируется выходной сигнал алгоблока 2.7(11РИС). При отрицательном значении
увеличивается сигнал выхода и наоборот при положительном значении
уменьшается сигнал выхода, при этом добиваются, чтобы
была равна нулю. Сформированный сигнал с выхода (11) подается на импульсный выход контроллера Р-112 для управления исполнительным механизмом МЭО. Аналогично параллельно работает регулятор 2.8(02РАН). С аналогового выхода (11) алгоблока 2.8(02 РАН) сформированный аналоговый сигнал подается на аналоговый выход контроллера для управления частотным преобразователем (ПЧ).

При автоматическом режиме выход аналогового регулятора 2.8(02 РАН) подключается к выходу (11) этого же алгоблока.

При отсутствии автоматического режима алгоблок 2.8(02РАН) переходит в режим слежения, т.е. на аналоговый выход подключается 6 вход алгоблока на который подается сигнал с ручного задатчика.

Регулятор разрежения в топке котла. Разрежение в топке котла снимается с двух датчиков (39а) и (39г). Поскольку сигнал нестабилен применяется некоторое преобразование в двух алгоблоках 1.4(23 СЛЖ) и 1.8(53 СИТ). Сигнал с датчиков разрежения (39а) и (39г) приходит на 2 и 3 входа алгоблока 1.4(23 СЛЖ) и на 1 и 3 входа алгоблока 1.8(53 СИТ). На 2 вход алгоблока 1.8(53 СИТ) приходит усредненный сигнал с выхода (11) алгоблока 1.4(23 СЛЖ). С выхода (11) алгоблока 1.8(53 СИТ) выбранный сигнал поступает на 2 входа импульсного регулятора 2.1(12 РИН) и регуляторов 3.1(02 РАН) и 3.2(02 РАН). Одновременно на эти же алгоблоки с выхода алгоблока 1.2(34 КОР) поступает на 3 входа инверсный сигнал с датчиков расхода (41в) и (41д), совместно выводится информация на показывающий прибор измерения расхода устанавливаемого по месту (FI 41г).

При работе на схеме с направляющими аппаратами в работу вступает импульсный регулятор 2.1(12 РИН). На 2 вход поступает сигнал разрежения и на 3 вход коллектирующий сигнал по расходу воздуха с алгоблока 1.2(34 КОР). Сигнал суммируется с заданием, после чего происходит разбаланс и формируется управляющий сигнал. Далее управляющий сигнал поступает на алгоблоки 2.2(45 ИЗО) и 2.3(45 ИЗО), кроме того эти алгоблоки необходимы для синхронизации направляющих аппаратов дымососов.

Предварительно отслеженный сигнал о положении исполнительного механизма (39ж) и (39м) поступает на 4 и 5 входа алгоблока 2.1(12 РИН), что соответствует входам нуль-органа, где происходит формирование дискретного сигнала. Сформированный дискретный сигнал с выхода 12.1 попадает на 2 и 3 входа алгоблоков (45 ИЗО) и с выхода 12.2 попадает на 3 и 2 входа этих же алгоблоков. В алгоблоках (45 ИЗО) формируется сигнал для управления исполнительными механизмами МЭО и если один направляющий аппарат опережает другой, то в этих алгоблоках включается логика "Запрета", что позволяет синхронизировать направляющие аппараты.

Кроме этого есть возможность работы на одном дымососе котла. Преключателями (Д1) или (Д2) выбирают дымосос, далее сигнал поступает на дискретный 8 вход алгоблоков (45 ИЗО). С алгоблока 2.1(12 РИН) сигнал будет уже поступать на 6 входа алгоблоков (45 ИЗО), что позволяет не включать логику "Запретов" и запускает в работу один дымосос.

Тоже самое с учетом работы аналоговых регуляторов происходит и при работе с ПЧ. При отсутствии автоматического режима или выборе преобразователя алгоблоки 3.1(02 РАН) и 3.2(02 РАН) находятся в режиме слежения, т.е. отслеживают сигнал задатчика на 6 входах. При наличии обоих сигналах на выход (11) этих алгоблоков подается сигнал сформированный регулятором.

При одинаковых настройках регулятора на выходе и формируется одинаковый сигнал и на входа 4 и 5 нуль-органа заводится частота преобразователя.

Блок-схема алгоритма, таблицы коэффициентов и конфигурации приведены в приложении 4.

1.5.2 Стандартные алгоритмы, примененные в алгоритме работы

При разработке алгоритма, управляющего работой котла, использовались стандартные алгоритмы из библиотеки алгоритмов контроллера Ремиконт. Их названия приведены в таблице 3.

Таблица 3. Алгоритмы из библиотеки контроллера Ремиконт.

Номер алгоблока

Код алгоритма

Полное название алгоритма

2.8

43 ПЕР

Переключение

1.2

34 КОР

Корень квадратный

1.4

23 СЛЖ

Слежение

1.8

53 СИТ

Среднее из трех

2.1

12 РИН

ПИД импульсный с нуль-органом

3.1

02 РАН

ПИД аналоговый с нуль-органом

3.2

02 РАН

ПИД аналоговый с нуль-органом

2.7

11 РИС

ПИД стандартный

2.8

02 РАН

ПИД аналоговый с нуль-органом

2.2

45 ИЗО

Избирательное отключение

2.3

45 ИЗО

Избирательное отключение

3.3

45 ИЗО

Избирательное отключение

3.4

45 ИЗО

Избирательное отключение

РАН (02) – ПИД аналоговый с нуль-органом.