Смекни!
smekni.com

Разработка автоматической системы управления водогрейным котлом КВГМ-100 (стр. 9 из 22)

Алгоритм формирует сигнал рассогласования и осуществляет пропорционально–интегрально–дифференциальное (ПИД) преобразование этого сигнала.

Сигнал рассогласования формируется как разность между суммой трех входных сигналов и сигналом задания. Суммирование входного сигнала осуществляется с помощью двух сумматоров.

Сигнал рассогласования равен:

(1.10)

Сигнал задания хздн находится в диапазоне

102,3 %, поэтому суммарный сигнал двух сумматоров также не должен выходить за этот диапазон.

ПИД-преобразование выполняется в соответствии с передаточной функцией:

(1.11)

На входе ПИД-звена вводится зона нечувствительности

и сигнал рассогласования инвертируется. При
сигнал на входе ПИД-звена равен нулю; при
на вход ПИД-звена поступает сигнал, равный
.

На выходе ПИД-звена установлен стандартный ограничитель. При достижении порога ограничения интегрирование в ПИД-звене прекращается и выходной сигнал интегратора "замораживается".

Параметры настройки.

· k2 – k5 – масштабные коэффициенты соответственно по входам 2 – 5 алгоритма. Сигнал на входе 1 не масштабируется;

· H1, H2 – уровни ограничения выходного сигнала. Соответственно по минимуму и максимуму;

· Н34 – соответственно порог срабатывания нуль-органа и гистерезис;

· Δ – зона нечувствительности;

· Тид – постоянные времени соответственно интегрирования и дифференцирования;

· Тм – коэффициент, обычно устанавливаемый равным времени перемещения исполнительного механизма, соответствующего 100%-му изменению регулируемого параметра;

· Тк – постоянная времени динамической балансировки алгоритма.

РИС (11) – ПИД импульсный стандартный.

Алгоритм формирует сигнал рассогласования и совместно с исполнительным механизмом постоянной скорости приближенно выполняет ПИД-преобразование этого сигнала.

Сигнал рассогласования формируется как разность между суммой пяти входных сигналов Х1 – Х5 и сигналом задания.

Суммирование входных сигналов осуществляется с помощью двух сумматоров. Первый сумматор стандартный, но без фильтра. Выходной сигнал второго

(1.12)

Свойства второго сумматора аналогичны свойствам первого за исключением того, что суммируются лишь два входных сигнала. Сигнал рассогласования равен:

(1.13)

Сигнал задания xздн находится в диапазоне ±102.3%, поэтому суммарный сигнал двух сумматоров также не должен выходить за этот диапазон.

Алгоритм содержит ПДД2-звено, имеющее передаточную функцию:

(1.14)

Что совместно с исполнительным механизмом постоянной скорости дает передаточную функцию вида:


(1.15)

Тм и Тм,0 – соответственно, установленный оператором коэффициент, определяющий полное время перемещения исполнительного механизма, и действительное время, с которым работает исполнительный механизм. Полное время перемещения исполнительного механизма – время его включения, которое приводит к 100%-му изменению регулирующего параметра. Обычно Тмм,0. При этом, устанавливаемый оператором коэффициент kп характеризует действительный коэффициент пропорциональности регулятора. В противном случае значение коэффициента пропорциональности равно kпТмм,0.

На входе ПДД2-звена сигнал инвертируется и вводится зона нечувствительности. Имеется возможность установить четыре дискретных значения минимальной длительности импульса tи мин, которая зависит от произведения двух параметров Δ и Тм и определяется из таблицы 4.

Таблица 4.

δ = Δ х Тм, % х с

Tи мин, с

0 <δ ≤25.6

0.12

25.6 < δ ≤ 51.2

0.24

51.2 < δ ≤ 76.8

0.36

δ > 76.8

0.48

Если выбирается Тмм,0 , то при любых значениях δ ≥ 12 "автоматически" устанавливается максимально допускаемая длительность минимального импульса, при которой отсутствуют автоколебания в замкнутой системе в режиме одного включения. Если δ < 12, автоколебания возможны в режиме одного включения.

Алгоритм РИС имеет нуль-орган, может работать в режиме дистанционного управления и переходить в отключенное состояние. В данном алгоритме отсутствует звено балансировки узла дистанционного управления. В связи с этим при переходе на дистанционный режим выходной сигнал алгоритма скачком принимает значение сигнала на входе 6. В данном алгоритме предусмотрена возможность динамической и статической балансировки алгоритма. Балансировка производится при отключении алгоритма, что имеет место в одном из режимов ДИСТ, РУЧН, СЛЕЖ. В отключенном состоянии звенья Д и Д2 обнуляются, поэтому после включения алгоритма при постоянном сигнале рассогласования и в комплекте с исполнительным механизмом постоянной скорости, алгоритм ведет себя как интегрирующее звено.

Параметры настройки.

· k2 – k5 – масштабные коэффициенты соответственно по входам 2 – 5 алгоритма. Сигнал на входе 1 не масштабируется;

· Н34 – соответственно порог срабатывания нуль-органа и гистерезис;

· Δ – зона нечувствительности;

· Kп – коэффициент пропорциональности;

· Тид – постоянные времени соответственно интегрирования и дифференцирования;

· Тм – коэффициент, обычно устанавливаемый равным времени перемещения исполнительного механизма, соответствующего 100%-му изменению регулируемого параметра;

· Тк – постоянная времени динамической балансировки алгоритма.

РИН (12) – ПИД импульсный с нуль-органом.

С учетом особенностей, присущих алгоритмам импульсного регулирования, алгоритм РИН соответствует алгоритму РАН.

СЛЖ (23) – слежение.

Алгоритм отслеживает сигнал

, образованный разностью между суммой трех входных сигналов и сигнала задания. Входные сигналы суммируются с помощью стандартного сумматора.

Функция слежения заключается в следующем. В установившемся режиме сигнал у на входе звена слежения равен сигналу

. Если сигнал
изменится, причем скорость этого изменения будет больше скорости слежения, равной 100/TI [%/мин], сигнал у начнет изменяться с постоянной скоростью 100/T1 [%/мин], стремясь сравняться с сигналом
. Если скорость изменения сигнала
меньше скорости слежения, сигнал у в каждом цикле успевает сравняться с сигналом
и поэтому сохраняется равенство у =
.

На выходе звена слежения установлен стандартный ограничитель.

Параметры настройки.

· k2 – k3 – масштабные коэффициенты соответственно по входам 2 – 3 алгоритма. Сигнал на входе 1 не масштабируется;

· k5 – коэффициент, определяющий степень автоподстройки параметра TI;

· H1, H2 – уровни ограничения выходного сигнала. Соответственно по минимуму и максимуму;

· Н35 – соответственно пороги срабатывания двух пороговых элементов;

· H4 – гистерезис, одинаковый для обоих пороговых элементов;

· TI – постоянная времени фильтра;

· Т4, Т5 – постоянные времени звеньев динамической балансировки соответственно алгоритма и узла дистанционного управления.

КОР (34) – корень квадратный.

Алгоритм выполняет операцию извлечения корня из двух сигналов, сформированных каналами a и b. Извлечение корня из положительных сигналов выполняется по формуле:

(1.16)

где у – выходной сигнал алгоритма; хa, хb – сигналы соответственно по каналам a и b; все сигналы выражаются в процентах.

Извлечение корня из отрицательного числа выполняется по формуле:

(1.17)

Таким образом, при стопроцентном сигнале по одному из каналов и при нулевом сигнале по другому каналу выходной сигнал алгоритма также равен 100 %

Параметры настройки.

· k2 – k5 – масштабные коэффициенты соответственно по входам 2 – 5 алгоритма. Сигнал на входе 1 не масштабируется;