В процессе работы на объект поступают возмущающие воздействия f1, f2,…, fi вызывающие отклонения параметров x1, х2,…, хn от их требуемых значений. Информация о текущих значениях x1, х2,…, хn; y1, y2,…, yj, поступает в систему управления и сравнивается с предписанными им значениями g1, g2,…, gk, в результате чего система управления вырабатывает управляющие воздействия e1, e2,…, em для компенсации отклонений выходных параметров от их заданных значений.
Таким образом, объект автоматизации в общем случае состоит из нескольких, в большей или меньшей степени, связанных друг с другом участков управления. Участки управления физически могут представляться в виде отдельных установок, агрегатов и т.д. или в виде локальных каналов управления отдельными параметрами одних и тех же установок, агрегатов и т.д.
В свою очередь, система управления, в зависимости от важности регулируемых параметров, квалификации эксплуатационного персонала, которым необходимо знать их значения для осуществления оптимального управления объектом, в общем случае, должна обеспечивать разные уровни управления объектом автоматизации, т.е. должна состоять из нескольких пунктов управления, в той или иной степени взаимосвязанных друг с другом.
С учетом изложенного структуры управления объектом автоматизации могут быть в частных случаях одноуровневыми централизованными, одноуровневыми децентрализованными и многоуровневыми. Одноуровневые системы управления, в которых управление объектом осуществляется с одного пункта управления, называются централизованными. Одноуровневые системы, в которых отдельные части сложного объекта управляются из самостоятельных пунктов управления, называются децентрализованными.
Структурные схемы одноуровневых централизованных и децентрализованных систем приведены на рисунке 6, на котором стрелками показаны только основные потоки передачи информации от объекта управления к системе управления и управляющие воздействия системы на объект управления. На рисунке 7 отдельные части сложного объекта управления, управляемые соответственно с пунктов управления ПУ1 … ПУ3 разделены штриховыми линиями.
Рисунок 7 – Примеры одноуровневых систем управления:
а – централизованная система; б – децентрализованная система; ЦПУ – центральный пост управления; ПУ1… ПУ 3 – местные посты управления данного уровня
До разработки концепции интеграции систем управления предприятия и основ CALS-технологий, одноуровневые централизованные системы применялись в основном для управления относительно несложными объектами или объектами, расположенными на небольшой территории. Это было обусловлено тем, что большинство промышленных объектов в прошлом и настоящем времени представляют собой сложные комплексы, отдельные части которых расположены на значительном расстоянии друг от друга. Более того, кроме основных технологических установок, объекты промышленности, в том числе и строительной, имеют большое число вспомогательных установок-подобъектов (промышленные котельные установки, компрессорные станции, насосные отделения оборотного водоснабжения, котлы-утилизаторы, очистные сооружения и т.п.), которые необходимы для обеспечения технологических установок всеми видами энергии, а также для утилизации и нейтрализации остаточных продуктов технологического процесса.
При использовании проводных связей, система управления такого комплексного объекта, построенная по одноуровневой централизованной системе получается достаточно сложной, в виду усложнения коммуникаций, кроме того, резко возрастают затраты на изготовление такой системы управления и ее эксплуатации. Центральный пункт управления, без применения SCADA-систем (построении мнемосхем на панелях щитов и пультов, с помощью цветной проволоки, или краски, и стрелочных или самопишущих приборов) получается очень громоздким. Переработка информации, большая часть которой является ненужной для непосредственного ведения технологического процесса, представляла ранее достаточно большие затруднения. Удаленность пункта управления от того или иного вспомогательного подобъекта затрудняла принятие оперативных мер по устранению тех или иных неполадок. Поэтому ранее, в основном, на сложных комплексных объектах управления, применялась одноуровневая децентрализованная система управления.
С появлением SCADA-систем, CALS-технологий, развитием аппаратной части электронно-вычислительных машин и появлением достаточно надежных беспроводных систем передачи информации, при автоматизации сложных комплексных объектов управления, вновь стали применяться централизованные системы управления. Основная концепция систем управления, построенных по принципам CALS-технологий и факт использования возможностей SCADA-систем, диктует необходимость централизации систем управления (за счет применения единой базы данных, куда стекается вся информация об объекте управления, управляющих и измеряемых возмущающих воздействиях).
Разработанные, в последнее десятилетие, линейные и нелинейные устройства управления позволяют успешно управлять локальными низкоуровневыми объектами сложного производственного процесса, и, кроме того, приспособлены к передаче информации об объекте управления, управляющих и измеряемых возмущающих воздействиях в единую базу данных предприятия, с использованием стандартных сетевых протоколов. Этот факт диктует необходимость создания многоуровневых (минимально – двухуровневых) систем управления. Нижним уровнем в таких системах являются локальные регуляторы, а верхним – SCADA-система, с помощью которых диспетчеры контролируют работу систем нижнего уровня и задают управляющие воздействия на локальные регуляторы, а также различные системы, осуществляющие анализ производственного процесса и позволяющие определять оптимальные или рациональные режимы работы оборудования. В идеале, в будущем, должны быть созданы автоматические, адаптирующиеся (саморегулирующиеся) системы управления, роль человека в которых должна быть сведена только к контролю за ее работой.
В качестве примера абстрактной многоуровневой системы управления на рисунке 8 представлена трехуровневая система управления сложным объектом с разветвленными технологическими связями между установками. Отдельные технологические установки управляются децентрализовано с пунктов управления 1…7. Это первый уровень управления. С пунктов 1…7 соответственно управляются объекты, имеющие существенную технологическую взаимосвязь. В связи с этим наиболее ответственные регулируемые параметры установок передаются на пункты управления 8…10 второго уровня управления. Основные параметры, определяющие технологический процесс объекта в целом, могут управляться и контролироваться с пункта управления 11 третьего уровня.
Рисунок 8 – Пример трехуровневой системы управления:
I…III уровни управления.
Для первого уровня при проектировании целесообразно предусматривать три режима управления:
1) командами, поступающими от уровня более высокого ранга;
2) командами, формирующимися непосредственно на первом уровне;
3) командами, поступающими как с уровня более высокого ранга, так и формирующимися непосредственно на первом уровне.
Для уровня второго ранга и выше возможны четыре режима работы:
1) аппаратура данного i-го ранга принимает и реализует в управляющие воздействия команды (i + 1) – го ранга;
2) команды формируются непосредственно на аппаратуре i-го ранга;
3) все функции управления с i-го ранга передаются на аппаратуру (i – 1) – го ранга;
4) часть команд на аппаратуру i-го ранга поступает с (i + 1) – го ранга, часть команд формируется на i-м ранге, часть функций управления передана на аппаратуру (i – 1) – го ранга.
Аппаратура i-го ранга соответственно должна иметь переключатели режимов на четыре положения с четкой сигнализацией положений.
Перевод аппаратуры с режима 1 на режим 2 осуществляется по команде или с разрешения оператора системы вышестоящего ранга.
Передача функций управления тем или иным параметром на нижестоящий ранг осуществляется только после приема команды о передаче и подтверждения оператора системы нижестоящего ранга о готовности к принятию на себя тех или иных функций управления (формирования команд).
Многоуровневая структура системы управления обеспечивает ее надежность, оперативность, ремонтопригодность. При этом легко решается оптимальный уровень централизации управления с минимальным количеством средств технологического контроля, управления и линий связи между ними.
АСУ ТП классифицируются на уровни классов 1, 2 и 3.
К классу 1 (АСУ ТП нижнего уровня) относятся АСУ ТП, управляющие агрегатами, установками, участками производства, не имеющие в своем составе других АСУ ТП (характерный пример – регуляторы).
К классу 2 (АСУ ТП верхнего уровня) относятся АСУ ТП, управляющие группами установок, цехами, производствами, в которых отдельные агрегаты (установки) имеют свои локальные системы управления, не оснащенные АСУ ТП класса 1.
К классу 3 (АСУ ТП многоуровневые) относятся АСУ ТП, объединяющие в своем составе АСУ ТП классов 1, 2 и реализующие согласованное управление отдельными технологическими установками или их совокупностью (цехом, производством).