Смекни!
smekni.com

Система автоматического управления манипулятором робота-лунохода (стр. 2 из 6)

2.7 Источники разработки:

Конспекты лекций по ТАУ и ЦСУ, метрологии, схемотехнике, микропроцессоры и программирование, надежности, передача данных, автоматизированное проектирование систем и средств управления, фонд библиотеки МФ ЮурГУ и информационных сайтов системы Internet.


3 Обоснование и выбор структурной схемы

Схема структурная электрическая предназначена для более глубокого изучения внутреннего строения системы, а так же позволяет найти место для дополнительных связей и улучшения качества изделия.

В соответствии с требованиями технического задания манипулятор должен перемещаться в космической среде.

На современном этапе развития вычислительной техники наиболее целесообразным будет строить систему управления на основе микроконтроллеров, т.к. цифровые элементы системы не имеют изменения характеристик от температуры, времени и т.п. К тому же современные микроконтроллеры обладают широкими возможностями для использования периферийного оборудования.

По техническому заданию требуется осуществлять связь по последовательному интерфейсу RS-485, следовательно, нам необходим формирователь протокола обмена по этому интерфейсу. Необходимо устройство, которое будет принимать команды по этому интерфейсу в соответствии с разработанным протоколом, и передавать текущее состояние манипулятора.

Т.к. манипулятор имеет 6 степеней свободы, то и контуров управления соответствующее число, плюс схват. Особенность контура управления схватом в том, что он не имеет обратной связи.

Для управления приводами и схватом необходимы усилители.

Для отслеживания текущего состояния манипулятора необходимы 6 датчиков углов, а также по трем осям требуется ввести обратную связь по скорости, для этого нужно еще 3 датчика скорости.

Для применения показаний датчиков в контурах управления необходима установка преобразователей и, возможно, усилителей, если сигнал слишком слабый.

Общую структурную схему системы управления можно представить в следующем виде:

Рис.1. Структурная схема системы управления в общем виде

Команды и данные, принятые от пульта оператора поступают на формирователь протокола обмена, где происходит проверка принятой информации на наличие ошибок, дешифрация команд и выделение из принятого пакета данных. Это же устройство должно формировать ответный пакет с данными, полученными от датчиков электромеханической системы. Наиболее рационально реализовать такое устройство программно.

Далее блок управления принимает решение о возможности выполнения принятых команд на основе информации о текущем состоянии электромеханической системы. Также он предоставляет данные о текущем состоянии манипулятора для формирователя протокола обмена которыми он заполняет ответный пакет данных для пульта оператора.

Контуры управления двигателями предназначены для создания заданного момента на двигателях при помощи усилителей, а управление усилителями происходит с помощью блока широтно-импульсной модуляции (ШИМ).

Обратная связь реализована через систему очувствления, включающую в себя датчики и преобразователи сигнала. Основные контура управления замкнуты на пульт оператора через формирователь протокола обмена, а дополнительные контуры управления по скорости на основании, плече и локте замкнуты на блок управления, который и рассчитывает необходимые управляющие воздействия.

Объектом управления является непосредственно манипулятор с шестью степенями свободы и схватом.

Контроль текущего состояния объекта осуществляется при помощи системы датчиков. Т.к. манипулятор имеет шесть степеней свободы, то нам необходимо шесть датчиков углов, а для реализации дополнительной обратной связи по скорости в 3 степенях нам необходимо дополнительно установить датчики скорости.

Таким образом, в системе управления будет 2 типа контуров управления приводами, один с обратной связью по скорости, второй без нее. Оба типа замкнуты через пульт оператора. Их структурные схемы приведены на Рис. 2 и Рис. 3.

Рис. 2. Структурная схема контура с обратной связью по скорости

Рис. 3. Структурная схема контура без обратной связи по скорости

Т.к. в контурах управления без обратной связи по скорости нет датчиков скорости, но имеется необходимость предотвращения перегрузок двигатели при, например, стопоре, то можно применить программное дифференцирование угла, для получения текущей скорости и сравнивать ее с заданным регулятором значением.

Контур управления схватом обратной связи не имеет, поэтому на схват не требуется установка датчиков.

Таким образом, структурная схема системы управления шестистепенным манипулятором примет вид, представленный на рисунке 4.

Рис. 4. Структурная схема системы управления схватом


4. Обоснование и выбор функциональной схемы

4.1 Обоснование и выбор двигателя

В соответствии с ТЗ выбираемый двигатель должен обладать следующими характеристиками:

1. Ток якоря электродвигателя на валу при максимальной нагрузке не должен превышать 10А;

2. Двигатель должен запитываться от одной аккумуляторной батареи 12В.

Двигатель – это электромеханический преобразователь, в котором осуществляется преобразование электрической энергии в механическую. В зависимости от рода потребляемого или отдаваемого в сеть тока двигатели подразделяются на двигатели переменного и постоянного тока. Двигатели переменного тока в свою очередь делятся на синхронные, асинхронные и коллекторные.

В синхронных двигателях поле возбуждения создается обмоткой, расположенной на роторе, которая питается постоянным током. Обмотка статора соединена с сетью переменного тока. В обычном исполнении вращающийся ротор с обмоткой возбуждения располагается внутри статора, а статор неподвижен. Управление синхронными двигателями осуществляется путем изменения частоты питающего напряжения, что недопустимо для нас. Синхронные двигатели также характеризуются большими угловыми скоростями и маленькими моментами. Поэтому часто такие двигатели используются в гироскопах.

В асинхронных двигателях специальная обмотка возбуждения отсутствует, рабочий поток создается реактивной составляющей тока обмотки статора. Этим объясняется простота конструкции и обслуживания асинхронных двигателей, так как отсутствуют скользящие контакты (щеточно-коллекторный узел) для подвода тока к вращающейся обмотке возбуждения и отпадает необходимость в дополнительном источнике постоянного тока для возбуждения двигателя. Недостатком является невозможность управления таким двигателем.

Среди коллекторных двигателей переменного тока получили распространение в основном однофазные двигатели малой мощности. Они находят применение в приводах, к которым подвод трехфазного или постоянного тока затруднен или нецелесообразен (в электрифицированном инструменте, бытовой технике и т. п.).

Использование двигателей переменного тока неприменимо для нашей системы, питающейся от аккумуляторов, т.к. для их использования придется устанавливать преобразователь постоянного напряжения в переменное.

Поэтому рассмотрим двигатели постоянного тока. Большинство двигателей постоянного тока — это коллекторные двигатели. Они выпускаются мощностью от долей ватта до нескольких тысяч киловатт. Обмотки возбуждения двигателей постоянного тока располагаются на главных полюсах, закрепленных на станине. Выводы секций обмотки ротора (якоря) впаяны в пластины коллектора.

Одна обмотка коллекторного двигателя постоянного тока представлена ниже:

Рисунок 5. Вид одной обмотки коллекторного двигателя постоянного тока

Ток, протекая по обмотке, находящейся в магнитном поле, наводит в ней ЭДС, которая старается провернуть рамку. Направление этой силы определяется по правилу правой руки. Чтобы во внешней цепи ток протекал в одном направлении, он должен быть выпрямлен. Для этого служит специальный электромеханический выпрямитель – коллектор, расположенный на валу машины. В простейшем случае используют две пластины с наложенными на них щетками. Последние так должны быть расположены в пространстве, чтобы коммутация происходила в моменты периода ЭДС через ноль. С увеличением количества рамок (секций) и соответственно пластин коллектора пульсации уменьшаются. При восьми коллекторных пластинах пульсация напряжения на щетках не превышает 1% от среднего, поэтому ток, протекающий во внешней цепи, можно считать практически постоянным.

Коллекторный двигатель постоянного тока обычно управляется при помощи Н-моста, позволяющего задавать направление вращения:

Рисунок 6. Н-мост

Для того, чтобы двигатель вращался вперед ключи Sa1 и Sa2, обозначенные на рисунке, должны быть замкнуты. Если необходимо вращение в обратную сторону, что замыкаются ключи Sb1 и Sb2, а Sa1 и Sa2 при этом должны быть разомкнуты.

Как видно, коллекторный двигатель постоянного тока прост в управлении. Но при этом обладает меньшим КПД, т.к. в единичный момент времени «полноценно работает» только 1 обмотка, а наличие щеточно-коллекторного узла приводит к искрению, стиранию контактов, что является причиной невысокой (по сравнению с другими двигателями) долговечностью.