Смекни!
smekni.com

Система автоматического управления манипулятором робота-лунохода (стр. 3 из 6)

Существуют также бесконтактные двигатели постоянного тока, которые лишены недостатка коллекторных ДПТ, но имеют более сложную схему управления. Рассмотрим принцип действия такого двигателя:

В первоначальный момент времени по обмоткам A, B, C протекают токи так, как указано на рисунке. Намагничивающая сила FR взаимодействует с потоком постоянного магнита ротора. Возникает вращающий момент, и двигатель приходит во вращение.


Рисунок 7. Положение ротора в начальный момент времени

Затем происходит смена токов в обмотке и FR изменяет свое направление. Ротор продолжает свое вращение, стремясь совместиться с результирующим вектором.


Рисунок 8. Положение ротора с течением времени

Последовательная смена подаваемых токов на обмотках заставляет вращаться ротор в выбранном направлении. Для более плавного изменения направления вектора FR используют модуляцию.

Схема управления бесконтактным двигателем постоянного тока выглядит следующим образом:

Рисунок 9. Схема управления бесконтактным двигателем постоянного тока

В качестве элемента, отслеживающего положение ротора, обычно используют датчик поворота ротора, который жестко соединен с ротором.

Схема управления таким двигателем сложнее. Однако, это компенсируется высоким КПД двигателя (все 3 обмотки всегда активны), отсутствием щеточно-коллекторного узла (нет искрения, высокая долговечность элементов).

Подведем итог: конструкция двигателей постоянного тока более сложная, стоимость выше и эксплуатация более дорогая, чем асинхронных, поэтому двигатели постоянного тока применяются в приводах, требующих широкого и плавного регулирования частоты вращения, или в автономных установках при питании двигателей от аккумуляторных батарей.

Выбор исполнительного двигателя должен соответствовать поставленным требованиям технического задания:

1. Основное назначение электродвигателя.

2. Тип и параметры источника питания.

3. Конструктивные особенности и массогабаритные показатели двигателя.

4. Тип системы управления двигателем.

5. Условия окружающей среды, в которой предстоит работать.

6. Ориентировочная мощность на валу двигателя, КПД двигателя.

7. Требования по надежности, работе на отказ, возможности проведения планового технического осмотра.

8. Стоимость и эксплуатационные расходы.

Вывод: Использование двигателей переменного тока не представляется возможным, т.к. разрабатываемая система относится к классу бортовых систем. Выбор электродвигателя переменного тока потребует использования дополнительного источника переменного напряжения.

Двигатель постоянного тока лишен этого недостатка – в качестве источника питания для него можно использовать аккумуляторную батарею и генератор постоянного тока, что удовлетворяет условиям технического задания.

Поэтому в качестве желаемого двигателя можно использовать бесконтактный двигатель постоянного тока.

Однако, как уже упоминалось выше, сложная схема управления данным классом двигателей накладывает дополнительные требования к разработке схемы управления.

В связи с тем, что курсовой проект является учебным, по согласованию с руководителем целесообразно использовать коллекторный двигатель постоянного тока с независимым возбуждением. Поставленным требованиям удовлетворяет планетарный мотор-редуктор King Right Motor PT7152 с двигателем постоянного тока. Характеристики электродвигателя:

Рисунок 10. Внешний вид выбранного двигателя

· Мощность - 120Вт

· Напряжение питания - 12В

· Скорость холостого хода - 2200 Об/мин

· Номинальная скорость - 1600 Об/мин

· Номинальный ток - 10А

· Крутящий момент двигателя (без редуктора) - 5,4 кг*см

Таблица 1. Характеристики планетарных мотор-редукторов PT7152

Передаточное число редуктора
30
60
90
Крутящий момент на выходе, кг•см 137,7 259,2 340,2
Скорость на выходе, об/мин 53,3 26,7 17,8
Скорость без нагрузки, об/мин 73,3 36,7 24,4
КПД 0.85 0.8 0.7
Длина редуктора, мм 65

4.2 Обоснование и выбор усилителя мощности:

Управление исполнительным органом осуществляется путем подачи на него сигнала рассогласования. Однако почти всегда величина сигнала рассогласования слишком мала для восприятия исполнительным элементом. Чтобы усилить ее используются усилители. Существует множество типов усилителей: релейные, электромагнитные, магнитные, полупроводниковые.

Все они обладают как положительными, так и отрицательными сторонами.

Релейное усиление обеспечивает хороший коэффициент усиления U, I, P. Имеет высокое КПД за счет низкого сопротивления контактов; имеет идеальную изоляцию между источником сигнала и нагрузкой. Но в момент коммутации происходит искрение, разрушающее контакты. Это приводит к низкой надежности и малому быстродействию. К тому же системам управления при использовании реле свойственно колебание.

Полупроводниковые усилители обладают высоким быстродействием. Их отрицательная сторона – остаточное напряжение 0.3В

С целью устранения недостатков релейных усилителей используются линейные усилители и усилители с импульсной модуляцией. Рассмотрим принцип действия линейного усилителя:

Рисунок 11. Линейный усилитель

Коэффициент усиления такой схемы равен:

(1)

Для определения необходимого коэффициента усиления по току и по напряжению необходимо выбрать интерфейс, который будет использоваться в разрабатываемой системе.

Существует 4 основных предела изменения абсолютных значений сигналов напряжения постоянного тока:

· От -5В до +5В

· От 0В до +5В

· От 0В до +10В

· От -10В до +10В

Так как в разрабатываемой системе предполагается использовать микроконтроллер, который работает с диапазоном напряжений от 0 до +5В, логично выбрать именно такой интерфейс. Выбранный двигатель работает от напряжения 12В, максимальный выход с микроконтроллера – 5В. Следовательно, коэффициент усиления по напряжению разрабатываемого усилителя должен быть 12 / 5 = 2.4.

Теперь определимся с коэффициентом усиления по току. Пределов изменения силы тока сигналов постоянного тока также четыре:

· От 0А до +5мА

· От -5мА до +5мА

· От 0А до +20мА

· От 4мА до +20мА

Максимальный ток на выходе микроконтроллера составляет 25мА. Минимальный – 0мА. Наиболее близкий интерфейс – от 0А до +20мА. Его и будем использовать в разрабатываемой системе.

Теперь, зная необходимый коэффициент усиления и подставив его в формулу (1), получаем:

Элементы R2 и R1 выбирают по таблицам рядов с учетом рекомендуемых значений не выше 1МОм. Это обусловлено тем, что для правильной работы операционного усилителя (ОУ) на его входах должны быть одинаковые потенциалы (у идеального ОУ; у реальных ОУ величина разности Uсм обычно равна 0.35мВ).

Падение напряжения в точке B равно:

Поэтому чтобы на первом входе (точка А) был такой же потенциал, R3 берут равным по номиналу параллельному включению R1 и R2. Однако, при изменении температуры суммарное сопротивление группы R1, R2 будет изменяться по другому, чем у резистора R3. И если брать очень большие величины сопротивлений данное различие в температурных коэффициентах очень быстро приведет к высокой разности входных потенциалов на входах ОУ и он выйдет в нерабочий режим – насыщение.

Рассчитаем коэффициент

, который должен иметь выбираемый транзистор для обеспечения тока 10А на выходе схемы (в соответствии с выбранным двигателем).

Максимальный ток на выходе ОУ составляет 3мА. Этот ток является током базы транзистора. А т.к. есть ток базы, то появляется ток коллектора, который равен

* Iб. Отсюда мы можем найти интересующий нас коэффициент: