|
3.2 Разработка структурной формулы привода.
1) z = 18 = 3[1] 3[3] 2[9]
2) z = 18 = 3[3] 3[1] 2[9]
3) z = 18 = 3[2] 3[6] 2[1]
4) z = 18 = 3[6] 3[2] 2[1]
5) z = 18 = 3[1] 3[6] 2[3]
6) z = 18 = 3[6] 3[1] 2[3]
Строим структурные сетки:
При выборе оптимального варианта структурной формулы исходим из того, что чем более быстроходными являются промежуточные валы, тем меньше их размеры, размеры монтируемых на них деталей и в конечном счёте, габариты коробки передач. В этом отношении вариант 1 предпочтительнее, т.к. для II и III валов n''max < n'max. Следовательно, по 1-му варианту для валов II и III будет меньше крутящий момент и, соответственно, меньше размер вала. Для структурных сеток более выгодным является “прогнутый” характер крайней левой ветви.
|
3.3 Разработка кинематической схемы привода.
Строим график частот вращения:
Находим число зубьев передачи:
Определяем Emin для минимального передаточного отношения
Сумма чисел зубьев сопряжённых колёс:
Определяем числа зубьев сопряжённых колёс:
Для второй группы:
Для третей группы:
Пусть К = 30.
|
Уравнение кинематической цепи:
Так как станок специализированный, нарезания резьбы на нём не осуществляется, следовательно, реверс может осуществляться двигателем.
4.1 Диапазон регулирования Rs.
Выбираем знаменатель ряда φ = 1,26
Число ступеней передач:
Стандартный ряд подач:
0,19; 0,25; 0,315; 0,4; 0,5; 0,63; 0,8; 1,0; 1,25; 1,6; 2,0; 2,5.
4.2 разработка структурной формулы.
Z = 12 = 3[1]2[3]2[6]
Z = 12 = 3[4]2[2]2[1]
Выбираем первый вариант.
Переходим от геометрического ряда подач S1, S2,… Sz к геометрическому ряду частот вращения последнего вращательного звена в цепи подач n1, n2,…nz.
где nр.к. – обороты реечного колеса, совершаемое за время, когда шпиндель сделает один оборот;
m – модуль реечного колеса;
z – число зубьев реечного колеса.
Отсюда:
Вычислим соответствующие обороты реечного колеса:
Приводим к стандартному ряду:
Передаточные отношения:
Находим числа зубьев колёс по использованной раннее методике.
Сумма чисел зубьев сопряжённых колёс: