Смекни!
smekni.com

Проектирование стального вертикального резервуара с понтоном для хранения нефти объемом 28000 м3 (стр. 1 из 6)

Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования

«ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра ТХНГ

КУРСОВАЯ РАБОТА

Тема

Проектирование стального вертикального резервуара с понтоном для хранения нефти объемом 28000м3

Томск

2010


Содержание

Исходные данные

Введение

1.Определение оптимальных параметров резервуара по критерию минимальности металла, затраченного на сооружение

2.Расчет толщины стенки резервуара

2.1 Расчет высоты налива и объема жидкости в резервуаре

2.2 Расчет толщины стенки для условий эксплуатации

2.3 Проверочный расчет на прочность резервуара

3.Расчет резервуара на устойчивость (в соответствии с РД 16.01 – 60.30.00 – КТН – 026 – 1 – 04)

4.Расчет массы конструкций резервуара

5.Расчет каре резервуара

Заключение

Список литературы


Исходные данные

Таблица 1.

Объем резервуара,
28000
Тип резервуара РВСП
Продукт нефть
Конструкция крыши купольная (сферическая)
Радиус сферической крыши 1,45·D
Кольцевой зазор между стенкой и понтоном, мм 190
Размеры листа Размеры листа h×l, мРазмеры листа 2×8
Строжка листов: у продольной кромки ΔL, мм у поперечной кромки Δh, мм 5 10
Нагрузки, Н/м2: снеговая
ветровая
4800 800
Теплоизоляция: плотность ρиз , кг/м3 толщина на стенке, мм толщина на крыше, мм 85 45 45
tmin (на глубине 0,5 м от поверхности), ºС 13,5
tmax (поверхностного слоя), ºС 33,5
tнк (начала кипения), ºС 50
Коэффициент оборачиваемости резервуара 18
Уклон днища 1:75
Допуск на листовой прокат Δ, мм ВТ
Плотность продукта ρ20, кг/м3 765
Припуск на коррозию C, мм 0,42
Технология сборки полистовая (Л)
Вакуум, Па 65

Введение

При проектировании стальных конструкций следует:

− выбирать оптимальные в технико-экономическом отношении схемы сооружений и сечения элементов;

− применять экономичные профили проката и эффективные стали;

− применять для зданий и сооружений, как правило, унифицированные типовые или стандартные конструкции;

− применять прогрессивные конструкции (пространственные системы из стандартных элементов; конструкции, совмещающие несущие и ограждающие функции; предварительно напряженные, вантовые, тонколистовые и комбинированные конструкции из разных сталей);

− предусматривать технологичность изготовления и монтажа конструкций;

− применять конструкции, обеспечивающие наименьшую трудоемкость их изготовления, транспортирования и монтажа;

− предусматривать, как правило, поточное изготовление конструкций и их конвейерный или крупноблочный монтаж;

− предусматривать применение заводских соединений прогрессивных типов (автоматической и полуавтоматической сварки, соединений фланцевых, с фрезерованными торцами, на болтах, в том числе на высокопрочных и др.);

− предусматривать, как правило, монтажные соединения на болтах, в том числе на высокопрочных; сварные монтажные соединения допускаются при соответствующем обосновании;

− выполнять требования государственных стандартов на конструкции соответствующего вида.

В данной курсовой работе мы попробуем рассчитать резервуар вертикальный стальной с понтоном.

Все расчеты выполнены по методу предельных состояний по СНиП 2-23-81* и СНиП 2.01.07-85 Нормы позволяют выбрать класс сталей для элементов резервуаров, рекомендуют вид сварки и сварочных материалов, метод монтажа, конструктивные решения, типы фундаментов и оснований. Здесь же даются указания по защите резервуаров от коррозии, охране окружающей среды, противопожарным мероприятиям.


1. Определение оптимальных параметров резервуара по критерию минимальности металла, затраченного на сооружение

Проверим возможно ли сооружать заданный резервуар с постоянной толщиной стенки:

(4,Прил.Б)

где

– максимально возможный объем резервуара с постоянной толщиной стенки;

π = 3,14 – трансцендентное число «пи»;

tко = 5 мм – минимальная, конструктивно необходимая толщина нижнего пояса стенки, согласно таблице 3.3 ПБ 03-605-03;

– коэффициент;

ρ = 765 кг/м3 – плотность хранимой жидкости ,

g = 9,8067 м/с2 – ускорение свободного падения,

– расчетное сопротивление сварного стыкового шва,

– т.к. контроль вертикального сварного шва не применяется,

Ry = расчетное сопротивление стали (листового проката) при сжатии, растяжении по пределу текучести.

, (4,Прил.Б)

- предел текучести стали, принимается в соответствии с ГОСТ 27772 – 88*, по таблице 1, для стали С345 (нижний пояс),

= 1,025 – коэффициент надежности по материалу,

,

,

,

Δдк =1,8 см =

м - сумма приведенных толщин крыши и днища резервуара – выбирается в соответствии с Р.Д.- 16.01.-60.30-ктн-026-1-04, п.2.3.3.3.

,

Если:

– можно соорудить резервуар с постоянной толщиной стенки,

– можно соорудить резервуар только с переменной толщиной стенки.

– следовательно, возможно сооружение резервуара только с переменной толщиной стенки, из соображений устойчивости будущей конструкции.

Оптимальная высота резервуара:

не зависит от объема резервуара, а определяется качеством материала, конструкцией днища и крыши и плотности продукта.

, (4,Прил.Б),

γс = 0,8 – коэффициент условий работы конструкции, при расчете стенки резервуара на прочность согласно ПБ 03-605-03 пункту 3.5.3.1.

= 1,1 – коэффициент надежности по гидростатическому давлению жидкости.

,

При полистовой сборке,

, полученная высота находится в допустимых пределах.

Находим количество поясов:

,

hл΄ = hл – 0,01 (строжка листов по ширине – 10 мм (таблица 1))

где hл – высота листа (по условию – 2м);

hл΄– высота листа с учетом строжки листа или подготовки листа под сварку.

hл΄ = 2 м – 0,01 м = 1,99 м,

Уточненная высота резервуара Н:

.

Радиус резервуара оптимальный:

,

, - для 11 поясов

, - для 12 поясов.

Количество листов в каждом поясе при полистовой сборке:

.

где

(строжка листов по длине – 5 мм)

– длина листа

= 8 м – 0,005 м = 7,995 м,

Для 11 поясов(R1=20,18м):

.

Тогда число листов либо 15,5 либо 16.

Для 12 поясов(R2=19,32м):

Тогда число листов либо 15 либо 15,5.