Конструкцию каждой детали создают, исходя из ее служебного назначения. Конструкция любого изделия в своей сущности является сложной системой сопряженных множеств связей: свойств материалов и размерных.
3. Выявление размерных связей и связей свойств материалов, обеспечивающих заданные показатели качества изделия
При конструировании механизмов, машин, приборов и других изделий, проектировании технологических процессов, выборе средств и методов измерений возникает необходимость в выявлении разме5рных связей и связей свойств материала.
Расчет размерных цепей является необходимым этапом конструирования, производства и эксплуатации широкого класса изделий. Существует несколько методов достижения заданной точности исходного звена: метод полной взаимозаменяемости, вероятностный метод, метод регулирования.
В процессе обработки или при сборке изделия исходное звено получается обычно последним, замыкая размерную цепь. В этом случае такое звено называется замыкающим. Понятие замыкающего звена используется при поверочном расчете размерной цепи. Таким образом, замыкающее звено непосредственно не выполняется, а представляет собой результат выполнения (изготовления) всех остальных звеньев цепи.
Объектом производства в данном курсовом проекте является редуктор цилиндрический одноступенчатый вертикальный с внутренним зацеплением, одной из наиболее важных деталей, которого является вал быстроходный, на который передается движение от электродвигателя. Вал быстроходный представляет собой цилиндрическую прямозубую вал-шестерню, которая приводит во вращение шестерню. Точность изготовления вала быстроходного оказывает значительное влияние на работу всего редуктора.
Требуемая точность связей исполнительных поверхностей изделия обеспечивается в процессе его проектирования путем ограничения допусками отклонений составляющих звеньев, образующих данный вид связи.
Причинами отклонений значений составляющих звеньев могут быть погрешности изготовления и монтажа деталей, упругие перемещения, возникающие под действием рабочих нагрузок, тепловые деформации деталей из-за нагрева и неравномерности нагрева, деформации деталей из-за перераспределения остаточных напряжений, износ деталей. Так как изменение значения каждого составляющего звена допустимо лишь в пределах допуска на это звено, то частями этого допуска следует ограничить проявление каждого из перечисленных факторов.
Размерные связи, выявленные для данного редуктора, представлены в графической части.
Основными причинами отказов деталей является износ, коррозия, перераспределение остаточных напряжений, приводящие к потери геометрической точности детали, а также усталостные явления в материале, и, как следствие, поломка детали. Поэтому важно учитывать механические, физические, химические свойства материала детали.
На рисунках 1, 2 представлены выявленные размерные цепи.
А8 А7 А6 А5 А4 А3 А2 А1 А∆ А11Рисунок 1 – Размерная линейная цепь
А∆ - тепловой зазор
А1 - высота шарикового подшипника
А2 – ширина втулки
А3 – ширина кольца
А4 – ширина зуба колеса
А5 – высота ступени вала
А6 - ширина втулки
А7 - высота шарикового подшипника
А8 - расстояние между торцевой поверхностью крышки
А9 – ширина корпуса
А10 – набор прокладок
А11 - расстояние между торцевыми поверхностями крышки
Б1,Б5 – отклонение от соосности наружных колец подшипников вала;Б2, Б6-смещение осей наружных колец подшипника вала в пределах посадочного зазора в отверстии корпуса; Б11, Б15 - то же отверстие корпуса подшипников другого вала;Б10 и Б14 отклонение от соосности наружных колец подшипников другого вала; Б9 – расстояние между осями отверстий корпуса;
Вал быстроходный для данного редуктора изготавливают из стали 40Х. Характеристики этой стали находятся в таблице 4.
Таблица 4 – Характеристики стали 40Х
Плотность | 7850 кг/м.куб. | |||||
Назначение | оси, валы, плунжеры, штоки, кольца - детали повышенной прочности | |||||
Модуль упругости | E=214000 МПа | |||||
Модуль сдвига | G=85000 МПа | |||||
Свариваемость | трудносвариваемая. Способы сварки: РДС, ЭШС. Необходимы подогрев и последующая термообработка. КТС - необходима последующая термообработка. | |||||
KVmet | 0.850 | |||||
Xmat | 0.100 | |||||
Kshl | 0.900 | |||||
Температура ковки | Начала 1250, конца 800. Сечения до 350 мм охлаждаются на воздухе. | |||||
Химический состав | Кремний:0.17-0.37,Марганец:0.50-0.80,Медь:0.30, Никель:0.30,Сера:0.035,Углерод:0.36-0.44, Фосфор:0.035,Хром:0.80-1.10, | |||||
Склонность к отпускной способности | склонна | |||||
Механические характеристики | ||||||
Состояние | Сигма-В, МПа | Сигма-Т, МПа | Кси, % | Дельта, % | НВ | Доп. |
закалка 830гр(масло),отпуск 540гр(вода) | 780 | 550 | 40 | 12 | 288 | |
закалка 850гр(вода),отпуск 200гр(возд) | 1760 | 1560 | 35 | 8 | н/д | |
Закалка 860 C, масло, Отпуск 500 C, вода, | 980 | 785 | 45 | 10 | 217 | |
940 | 785 | 55 | 13 | 217 | ||
570 | 320 | 35 | 17 | 217 |
4. Выбор и обоснование метода достижения точности при сборке
Качество машин обеспечивается точностью расположения деталей, узлов и механизмов, образующих конечные изделия. При этом число операций, связанных с подгонкой деталей и регулирования их положений в процессе сборки должно сводиться к минимуму. Зазоры, предельные размеры и другие параметры, определяющие взаимное положение собираемых объектов, зависят от режимов работы конструктивных, технологических и эксплуатационных особенностей деталей, узлов и конечных изделий, поэтому часто взаимосвязь между параллельными размерами и допусками собираемых деталей и узлов устанавливают с помощью расчетов, основанных на теории размерных цепей.
Размерная цепь – совокупность размеров, образующих замкнутый контур и непосредственно участвующих в решении поставленной задачи. Расчет размерных цепей позволяет обоснованно назначать допуски на взаимосвязанные размеры деталей и сборочных единиц. Звено размерной цепи – один из размеров образующих размерную цепь. Звенья бывают следующих видов:
· Замыкающее звено – звено размерной цепи, которое получается последним в процессе изготовления или сборки;
· Исходное звено – получается, по условию задачи, для решения которой используется размерная цепь;
· Составляющее звено – звено, изменение которого вызывает изменение замыкающего звена;
· Увеличивающее звено – звено, с увеличением которого увеличивается замыкающее звено;
· Уменьшающее звено – звено, с уменьшением которого уменьшается замыкающее звено.
Заданная точность исходного звена достигается с наименьшими технологическими и эксплуатационными затратами. При прочих равных условиях рекомендуется выбирать в первую очередь такие методы достижения точности, при которых сборка производится без подбора, пригонки, регулирования и собранные изделия отвечают всем требованиям взаимозаменяемости, то есть, использовать метод полной взаимозаменяемости или вероятностный метод. Если применение указанных методов экономически нецелесообразно или технологически невозможно, следует перейти к применению одного из методов неполной взаимозаменяемости.
4.1 Метод полной взаимозаменяемости
Сущность метода заключается в том, что требуемую точность замыкающего звена размерной цепи достигают каждый раз, когда в размерную цепь включают или заменяют в ней звенья без их выбора, подбора или изменения их величин.
Основными преимуществами метода полной взаимозаменяемости являются:
· наибольшая простота достижения требуемой точности замыкающего звена, так как построение размерной цепи сводиться к простому соединению всех составляющих звеньев;
· простота нормирования процессов во времени, при помощи которых достигается требуемая точность замыкающего звена;
· относительная простота механизации и автоматизации технологических процессов, при помощи которых осуществляется достижение требуемой точности замыкающего звена;
Возможность выполнения технологических процессов рабочими, не обладающими высокой квалификацией, поскольку процесс сводиться или к соединению деталей (сборка), или к их смене (обработка на станках).
Проведем расчет данной размерной цепи методом полной взаимозаменяемости.
1) Для выполнения служебного назначения редуктора необходимо, чтобы минимальная величина замыкающего звена – зазора А∆ была равна 0, а максимальная 0,15 мм.
2) Тогда верхнее [∆S∑] и нижнее [∆I∑] предельные отклонения соответственно равны:
[∆S∑] = 0,15
[∆I∑] = 0
4) [∆C ∑]=
=5) А∑ =
6) ac=