- внутренние трубы – сталь 10Х17Н13М3Т ГОСТ 9941-81;
- наружные трубы – сплав АД1 ГОСТ 18475-82;
- трубные решетки– сталь 10Х17Н13М3Т ГОСТ 9941-81;
- крышки – сталь 10Х18Н9ТЛ ГОСТ 977-88,
- прокладки – паронит;
- шпильки – сталь 35Х ГОСТ 1050-88.
3. Технологический расчет аппарата воздушного охлаждения
3.1 Исходные данные
Мощность установки G = 24 т/сут;
рабочая среда – уксусная кислота;
давление (абсолютное) насыщенных паров рабочей среды Р = 0,22 МПа;
температура конденсации - tн = 144о С [1, с. 565];
место расположения аппарата – г. Уфа;
коэффициент оребрения Кор = 14,6;
конечная температура конденсата уксусной кислоты tк = 60оС.
3.2 Тепловой и материальный баланс
Массовый расход уксусной кислоты в кг/с:
G = 24000/3600 = 6,67 кг/с.
Трубное пространство аппарата разделяем на две зоны: зону конденсации и зону охлаждения.
По всей зоне конденсации температура постоянна и равна tн = 144о С, при данной температуре конденсат имеет следующие теплофизические свойства:
плотность ρ144 = 904 кг/м3 [3, c. 556];
теплопроводность λ144 = 0,149 Вт/м.К [2, c.95];
динамический коэффициент вязкости μ144 = 0,00028 Па.с [2, c.54];
удельная теплоемкость с144 = 2514 Дж/кг.К [1, c.544];
удельная теплота конденсации r144 = 372643 Дж/кг [2, c.215].
Теплофизические свойства конденсата в зоне охлаждения определяем по средней температуре:
tср = (tн + tк)/2; (1)
tср = (144 + 60)/2 = 102о С:
плотность ρ102 = 958 кг/м3 [3, c. 556];
теплопроводность λ102 = 0,156 Вт/м.К [2, c.95];
динамический коэффициент вязкости μ102 = 0,00044 Па.с [2, c.54];
удельная теплоемкость с102 = 2346,4 Дж/кг.К [1, c.544].
Тепловая нагрузка аппарата:
- для зоны конденсации:
Q1 = G.r; (2)
Q1 = 6,67.372643 = 2485500 Вт = 2485,5 кВт;
- для зоны охлаждения:
Q2 = G.(с144.tн - с102.tк); (3)
Q2 = 6,67.(2514.144 – 2346,4.60) = 1475600 Вт = 1475,6 кВт.
За начальную температуру воздуха принимаем температуру на 2-3оС выше средней июльской температуры tнв = 22оС [4, с. 74].
Выбираем значение теплонапряженностей:
- для зоны конденсации при разности tн - tнв = 144 – 22 = 122 К q1 ≈ 3000Вт/м2 [4, с. 94];
- для зоны охлаждения при разности tк - tнв = 60 – 22 = 38 К q1 ≈ 860 Вт/м2 [4, с. 94].
Ориентировочная поверхность холодильника-конденсатора:
Fор = Q/q; (4)
- для зоны конденсации: Fор1 = 2485500/3000 = 828,5 м2;
- для зоны охлаждения: Fор2 = 1475600/860 = 1716 м2.
Общая ориентировочная поверхность теплообмена:
Fор = Fор1 + Fор2; (5)
Fор = 828,5 + 1716 = 2544,5 м2.
Согласно [4, с. 129] выбираем аппарат АВГ с площадью теплообмена 2500 м2.
3.3 Уточненный расчет аппарата воздушного охлаждения
Параметры выбранного АВГ [1, с. 129]:
поверхность теплообмена F = 2500 м2;
площадь сечения одного хода секции Fс = 0,0142 м2;
число ходов по трубам nx = 2;
длина труб L = 8 м;
количество рядов труб z = 4;
общее количество труб в секции Nс = 82;
количество секций nс = 3;
коэффициент увеличения поверхности ψ = 19,6 [4, с. 14];
площадь свободного сечения перед секциями аппарата Fсв = 30 м2 [4, с. 79].
Данный аппарат снабжен двумя вентиляторами с пропеллером диаметром D = 2800 мм, число лопастей 8, угол установки лопастей γ = 10…30о, частота вращения колеса 213 об/мин.
Рабочая точка А находится на пересечении линии сопротивления АВГ для четырехрядных секций и кривой аэродинамического напора вентилятора при γ = 30о [4, с. 39]. данной точке соответствуют следующие рабочие параметры, отнесенные к нормальным условиям:
- подача Vном = 178000 м3/ч;
- напор принимаем на 50% больше (по анализу аэродинамической характеристики вентилятора и секций АВЗ), так как коэффициент оребрения Кор = 14,6: Рном= 110 + 0,5.110 = 165 Па;
- КПД η = 0,7.
Фактические параметры вентилятора при условиях tнв = 22оС,
ратм = 101,6 кПа:
- подача:
, (6)где ρо = 1,293 кг/м3 плотность воздуха в нормальных условиях,
ρв – фактическая плотность воздуха:
, (7)где ро = 101,3 кПа нормальное атмосферное давление,
кг/м3, м3/ч;- напор:
, (8) Па.Массовая подача воздуха вентилятором:
Gв = 2Vвρв, (9)
Gв = 2.192275,7.1,197 = 460308 кг/ч.
Конечная температура воздуха:
, (10)где св = 1005 Дж/(кг.К) средняя теплоемкость воздуха,
оС.Условие tкв < tк выполняется.
Принимаем следующую схему распределения температур между теплоносителями в зонах конденсации и охлаждения:
Зона конденсации Зона охлаждения
tн = 144оС ↔ tконд=144оС tконд=144оС → tк = 60оС
tкв = 52,8оС ← tнв = 22оС tкв = 52,8оС ← tнв = 22оС
ΔtМ1 = 91,2 оС ΔtБ1 = 122 оС ΔtБ2 = 91,2 оС ΔtМ2 = 38 оС
Так как ΔtБ1/ΔtМ1<2, движущая сила в зоне конденсации находится по формуле (11):
Δtср1 =
, (11)Δtср1 =
оС.В зоне охлаждения ΔtБ2/ΔtМ2>2, следовательно:
Δtср2 =
, (12)Δt’ср2 =
оС.В зоне охлаждения в действительности будет смешанное движение, для которого определяем поправочный коэффициент ε. В данном случае при числе ходов nх = 2:
, (13)где
определяется в зависимости от значений вспомогательных величин R и Р: , (14) ; , (15) .По [4, с. 73]
= 0,94, тогда .В этом случае в зоне охлаждения средняя движущая сила
Δtср2 = Δt’ср2.ε, (16)
Δtср2 = 60,8.0,955 = 58,1.
Средняя температура воздуха в пределах аппарата:
tсрв =
, (17) tсрв = оС,Среднее давление воздуха:
рсрв = ратм + 0,5. Рв, (18)
рсрв = 101,6 + 0,5. 152,75 = 101675 Па.
Средняя плотность воздуха:
, (19) кг/м3.Средний объемный расход воздуха:
Vсрв =
, (20)Vсрв =
м3/с.Скорость воздуха в самом узком сечении межтрубного пространства:
wуз =
, (21)где ηс = 0,38 при Кор = 14,6 [4, с. 79],
wуз =
м/с.Приведенный коэффициент теплоотдачи со стороны холодного потока (воздуха) для аппарата исполнения Б4 [4, с. 81]:
αв = 52,2.lg wуз – 0,035tсрв – 3,84, (22)
αв = 52,2.lg 9,826 – 0,035.37,4 – 3,84 = 46,65Вт/(м2.К).
Коэффициент теплопередачи для зоны конденсации со стороны конденсирующегося потока:
, (23)где KL = 0,6 для труб длиной L = 8 м [4, с.78],
сТ = 0,72 – для горизонтальных труб,
dвн = 0,021 м – внутренний диаметр биметаллической трубы [4, с. 13],
g = 9,81 м/с2 – ускорение свободного падения,
. (20)Тепловой поток от стенки к охлаждаемому воздуху:
q1 = Kр1Δtср1, (24)
где Kр1 – коэффициент теплопередачи:
Kр1 , (25)
где 1/rТ = 0,0002 м2.К/Вт тепловое сопротивление загрязнений со стороны уксусной кислоты,
1/ rст = 0,000186 м2.К/Вт тепловое сопротивление материала стенки,