Kр1 , (26)
q1 =
. (27)Уточненное значение температуры стенки:
tст =
. (28)В результате подстановки значений получаем систему уравнений:
(29)Полученную систему решаем методом последовательных итераций. Для этого предварительно задаемся значением tст = 143оС. Тогда
Вт/(м2.К),q1 =
Вт/м2,tст =
оС.Результаты последующих приближений сведены в таблицу 1.
Таблица 1
Приближение | tст, оС | α1, Вт/(м2.К), | q1, Вт/м2 | tст уточненный, оС |
1 | 143 | 2766,01 | 3,85 | 143,9987 |
2 | 143,9987 | 14323,29 | 3,24 | 143,9998 |
3 | 143,9998 | 22558,92 | 3,18 | 143,9999 |
4 | 143,9999 | 25376,87 | 3,17 | 143,9999 |
Принимаем α1 = 25376,87 Вт/(м2.К), тогда по формуле (26)
Kр1 Вт/(м2.К).
Площадь теплопередачи зоны конденсации:
, (30) м2.Далее определяем коэффициент теплоотдачи для зоны охлаждения.
Средний объемный расход потока:
, (31) м3/с.Средняя скорость теплоносителя в трубах двухходового теплообменника:
, (32) м/с.Критерий Рейнольдса:
, (33) .Критерий Прандтля:
, (34) .Режим течения уксусной кислоты турбулентный (Re > 10000), тогда критерий Нуссельта [4, с. 77]:
, (35) .Откуда коэффициент теплоотдачи:
Вт/(м2.К).Коэффициент теплопередачи по формуле (35):
Kр1 Вт/(м2.К).
Площадь теплопередачи зоны охлаждения по формуле (26):
м2.Общая площадь теплообмена:
Fр = 693,6 + 1327,5 = 2021,1 м2.
Запас поверхности:
ΔF =
, (36)ΔF =
.Запас поверхности значительный, его корректировку можно осуществить несколькими способами: изменением подачи воздуха за счет регулирования угла γ установки лопастей вентилятора или с помощью жалюзийного устройства. Большая величина запаса поверхности увеличивает диапазон температур, при которых может работать аппарат, поэтому необходимость применения увлажнения воздуха отсутствует.
3.4 Расчет сопротивлений
3.4.1 Аэродинамическое сопротивление пучка труб
Число Рейнольдса для воздушного потока:
ReB = wуз.dуз /ν, (37)
где dуз = 0,2 м – ширина узкого сечения,
ν = 0,000014 м2/с – кинематическая вязкость воздуха,
ReB = 9,826.0,2 /0,000014 = 67857.
Число Эйлера:
Eu = 4,75 zReв-0,285, (38)
Eu = 4,75. 4. (67857)-0,285 = 0,8.
Eu = ΔрА/(ρwуз2). (39)
Аэродинамическое сопротивление аппарата из формулы (39):
ΔрА = Eu. (ρwуз2), (40)
ΔрА = 0,8. (1,293. 9,8262) = 100 Па.
3.4.2 Гидравлическое сопротивление аппарата
Гидравлическое сопротивление аппарата:
, (41)где λг – гидравлический коэффициент сопротивления трения, для турбулентного режима:
λг = 0,3164/Re0,25,
λг = 0,3164/149380,25 = 3,5.
ξг – коэффициент местного сопротивления при движении охлаждаемого продукта в трубном пространстве:
ξг = 1,5 для входной и выходной камеры (для одной секции),
ξг = 2,5 на повороте между ходами и секциями (два хода внутри секции, два промежутка между секциями),
ξг = 1 на входе потока в трубы и на выходе из них (для одной секции).
С учетом коэффициентов получаем:
Па.4. Прочностной расчет
Устанавливаем основные размеры узлов заданного аппарата:
- количество рядов труб z = 4;
- число ходов по трубам nх = 2;
- длина труб L = 8 м;
- шаг размещения т руб – t1 = 59 мм, t2 = 51 мм
Для данного аппарата примем камеру разъемной конструкции. Основные размеры камеры изображены на рисунке 4.
Рисунок 4
1 – крышка; 2 – прокладка; 3 – трубная решетка
4.1 Проверка на прочность шпилек
Определяем основные расчетные размеры трубной решетки и прокладки.
Расчетная ширина прокладки
bпрR = min {bпр, 3,87
} (37)bпрR = min {12, 3,87
= 13,4} = 12 мм.Принимаем прокладочный коэффициент mпр = 2,5 для прокладки из паронита.
Расчетный размер трубной решетки в продольном направлении:
Lp = Lпр – ЬпрR; (38)
Lp = 1282 - 12 = 1270 мм.
Расчетный размер трубной решетки в поперечном направлении:
Вр = Впр – bпрR; (39)
Вр = 246 - 12 = 234 мм.
Расчетная ширина перфорированной части трубной решетки:
Вт = min {z.t2, Вр}; (40)
Вт = min{4· 51 = 204; 234} = 204 мм.
Характерный размер отверстий решетки (для решеток с трубами, закрепленными в части толщины решетки):
dE = do - δт; (41)
dE = 25,4 – 2= 23,4 мм.
Коэффициент ослабления решетки отверстиями:
φр = 1 - dE/t1; (42)
φр = 1 – 23,4 / 52 = 0,55.
Принимаем для дальнейших расчетов прибавку на коррозию материала С = 1,5 мм.
Определяем расчетное усилие в шпильках в условиях эксплуатации:
FБ = Pp[LpBp + 2bпрR.mпр.(Lр + Вр)], (43)
где Рр – расчетное давление,
Рр = Р - Ратм, (44)
Рр = 0,22 – 0,1 = 0,12 МПа;
FБ = 0,12· [1270.234 + 2.12.2,5·(1270 + 234)] = 46490,4 Н.
Давление испытания при использовании литых крышек:
Рисп = 1,5Pp[σ]20/[σ]t, (45)
где [σ]t = 121,2 МПа, [σ]20 = 140 МПа – допускаемые напряжения для стали 10Х18Н9ТЛ – материала для изготовления крышки (для исполнения Б4) при рабочей температуре tр = 144оС и при нормальных условиях соответственно [4, с. 147];
Рисп = 1,5.0,12·121,2/140 = 0,156 МПа,
Коэффициент податливости фланцевого соединения крышки и решетки ηр = 2 [4, с. 84].
Расчетное усилие в шпильках в условиях испытания или монтажа:
(46)Окончательно принимаем Fo = 106797,6 Н.
Поперечное сечение шпильки М16 (в ослабленном резьбой сечении) SБ = 157 мм2 [4, с. 118].
Допускаемые напряжения для шпилек из стали 35Х:
[σ]20Б = 230 МПа; [σ]tБ = 228,24 МПa.
Условие прочности шпилек:
FБ/(SБпБ) = 46490,4/(157·46) = 6,44 < [σ]tБ =228,24,
Fo /(SБпБ) = 106797,6/(157·46) = 14,8 < [σ]20Б = 230.