Смекни!
smekni.com

Автоматический литейный конвейер (стр. 2 из 6)

2.2 Кинематическая схема привода

Составим кинематическую схему привода согласно заданию (рисунок 2). Вводим обозначения: n- частота вращения вала, N – передаваемая мощность на соответствующем валу, U – передаточное число элементов привода,

- к.п.д. элементов привода.

Рисунок 2 Кинематическая схема привода

Общий коэффициент полезного действия привода находим как произведение к.п.д. входящих узлов трения:

=
, (2.1)

где

- к.п.д ременной передачи,
- зубчатой передачи,
- подшипников качения,
- муфты.

= 0,95*0,96*0,96*0,98=0,85 ,

Рассчитываем мощность необходимую на валу двигателя:

, (2.2)

, (кВт)

Выбираем асинхронный двигатель марки RA132MB6 с характеристиками:

- мощность двигателя N = 5,2 кВт.

- обороты двигателя n = 820 об/мин.

- момент инерции на валу J = 0.0434

.

Возможное передаточное число двигателя:

, (2.3)

,

Принимаем передаточное число расчетного редуктора в пределах 7,1…50 (

= 22 ) , ременной передачи в пределах от 3…8 (
=4),

, (2.4)

,

Передаточное число «реального» редуктора:

, (2.5)

,

Передаточное число тихоходного вала:

, (2.6)

= 0,88*4,58=4,05.

Передаточное число быстроходного вала:

, (2.7)

,

3 Расчет редуктора

3.1 Основные характеристики механизмов привода

3.1.1 Расчет частоты вращения валов частота вращения ротора

двигателя:

, (об/мин) (3.1)

- частота вращения входного вала редуктора:

, (3.2)

, (об/мин)

- частота вращения быстроходного вала:

, (3.3)

, (об/мин)

- частота вращения тихоходного вала:

, (3.4)

,(об/мин)

3.1.2 Определяем мощность на каждом валу мощность на валу

двигателя:

, (3.5)

, (кВт)

- мощность на входном валу редуктора:

, (3.6)

, (кВт)

- мощность на быстроходном валу редуктора:

, (3.7)

, (кВт)

- мощность на тихоходном валу редуктора:

, (3.8)

, (кВт)

3.1.3 Определяем крутящий момент на валах системы момент на валу

двигателя

, (3.9)

, (Н*м)

- момент на входном валу редуктора:

, (3.10)

, (Н*м)

- момент на быстроходном валу редуктора:

, (3.11)

, (Н*м)

- момент на тихоходном валу редуктора:

, (3.12)

, (Н*м)

3.2 Подбор редуктора

По рассчитанным данным подбираем редуктор марки 1Ц2У-250-22-11У1.

Редуктор зубчатый цилиндрический двухступенчатый узкий горизонтальный общемашиностроительного назначения предназначен для увеличения крутящих моментов и уменьшения частоты вращения. Условия применения редукторов - нагрузка постоянная и переменная, одного направления и реверсивная, работа постоянная или с периодическими остановками, вращение валов в любую сторону, частота вращения входного вала не более 1800 об/мин; внешняя среда - атмосфера типов I, II, при запыленности воздуха не более 10 мг/куб.м. Для двухконцевого исполнения валов номинальная радиальная нагрузка на каждый из валов должна быть уменьшена на 50%. Климатические исполнения У1, У2, У3, Т1, Т2, Т3, УХЛ4, О4 по ГОСТ 15150. Конусность быстроходного и тихоходного валов 1:10. При комплектации конусными валами в состав поставки входят шайбы и гайки для крепления полумуфт.

Редуктор имеет следующие характеристики:

- Межосевое расстояние - 410 мм.

- Непрерывный режим работы (Н) ПВ=100% - Номинальный крутящий момент на выходном валу при работе в повторно-кратковрем. режимах- 5000 Н*м.

- КПД 97%.

- Масса - 310 кг.

- Параметры быстроходного конического вала (1:10) (DxL) 40х82.

- Параметры тихоходного конического вала (1:10) (DxL) 90х130.

- Параметры зубчатой полумуфты m=4/z=56.


4 Расчет ременной передачи

4.1 Расчет ременной передачи

В настоящее время в машиностроение получили наибольшее распространение передачи клиновыми (нормального и узкого сечения) и поликлиновыми ремнями. Скорость клиновых ремней не должна превышать 25-30 м/с, а поликлиновых ремней 40 м/с. При одинаковых габаритных размерах передачи узкими клиновыми ремнями в 1,5 – 2 раза выше по тяговой способности, чем передача клиновыми ремнями нормального сечения.

Согласно ГОСТ 1284.3-80 расчет клиновых ремней сводится к подбору типа и числа ремней. Основным расчетам ремней считается расчет по тяговой способности.

Расчет ременной передачи ведем по алгоритму приведенному на рисунке 3

Рисунок 3 Схема алгоритма расчета клиноременных передач

Расчеты производим на ЭВМ.

Полученные данные:

- Выбираем нормальный тип ремня. (Б)

- Мощность на ведущем валу N = 5.19.

- Частота вращения ведущего вала n = 820 об/мин.

- Передаточное число ременной передачи U = 4.

- Диаметр малого шкива d1 = 125 мм.

- Высота сечения ремня h = 10.5 мм.

- Диаметр большого шкива d2 = 500 мм.

- Длина ремня L = 2650 мм.

- Межосевое расстояние А = 1016 мм.

- Скорость ремня V= 5.23 м/с.

- Угол обхвата малого шкива а = 158 град.

- Число ремней клиновых Z = 5.

- Усилие действующее на валы Q = 1991Н.


5 Конструирования вала тяговых звездочек

5.1 Расчет тихоходного вала

Разработка конструкций валов приводов содержит в себе все основные стадии проектирования, техническое предложение, эскизный проект. Алгоритм расчета валов приведен на рисунке 4.

Рисунок 4 Схема алгоритма расчета вала

Исходные данные для расчета: Т – сила действующая на вал; Fr, Ft,Fx - крутящие моменты. Так как на расчетном валу нет элементов вызывающих осевую силу Fx= 0, Ft = 20806, Fr = -20806, Т = 4383.

5.2 Определения опорных реакций

5.2.1 Расчет реакции опор

Реакции опор вала изображены на рисунке 5.

Рисунок 5 Эпюры вала тяговых звездочек

Реакция левой опоры.

от оси

:

, (5.1)

где l1,l2,l3,l4 – расстояние между элементами конструкции вала, l1 = 100, l2 = 630 , l3=100, l4=110,

=
= 20806 H.