1. Судовая ядерная энергетическая установка ледокола
1.1 Особенности судовой ядерной энергетической установки
1.2 Паропроизводящая установка. Описание основных систем
2.2 Прямой тепловой расчёт парогенератора
2.3 Компоновка проточной части и расчёт скоростей сред
2.4 Расчёт теплоотдачи, теплопередачи и определение площади поверхности теплообмена
2.5 Конструктивное оформление парогенератора
3. Тепловой и габаритный расчёт АКТИВНОЙ ЗОНЫ реактора
3. Тепловой и габаритный расчёт АКТИВНОЙ ЗОНЫ реактора
2.1.2 Особенности тепловых и температурных полей в АЗ
2.1.3 Содержание тепловых расчётов
3.2.1 Определение размеров АЗ и ТВС
2.3 Проверка теплотехнической надёжности активной зоны
2.3.1 Расчёт максимальной температуры оболочки ТВЭЛ
2.3.2 Расчёт максимальной температуры ядерного горючего
2.3.3 Расчёт запаса по кризису теплообмена
Курсовой проект по дисциплине “Судовое главное энергетическое оборудование. Ядерные паропроизводящие установки" - это вид самостоятельной работы студентов специальностей 140200, выполняемой под руководством преподавателя, которая содержит расчётно-пояснительную записку на 30-35 стр. и графическую часть 3 листа формата А1.
Цель выполнения проекта:
закрепление теоретических знаний;
формирование навыков применения полученных знаний для решения прикладных задач проектирования ППУ и её элементов;
формирование навыков разработки технологических процессов монтажа, испытаний и сдачи ППУ;
подготовка к выполнению дипломного проекта;
подготовка к самостоятельной работе по избранной специальности;
развитие творческих способностей студентов.
При выполнении курсового проекта по дисциплине "СГЭО: Паропроизводящие установки" студенты применяют знания, полученные не только при изучении данного курса лекций, но и таких курсов, как "Теоретические основы судовой энергетики", "Теплообменное оборудование", "Теоретическая механика", "Сопротивление материалов" и др.
Проект выполняют в течение одного семестра в соответствии с графиком учебного процесса и защищают перед комиссией, назначенной кафедрой.
Физические параметры
Р - давление;
T, t - температура;
V - объём (удельный);
W - скорость;
Q - тепловая мощность;
q - тепловой поток;
i - энтальпия;
G - расход;
D - паропроизводительность;
λ - коэффициент теплопроводности;
α - коэффициент теплоотдачи;
К - коэффициент теплопередачи;
R - термическое сопротивление;
μ - динамическая вязкость;
ν - кинематическая вязкость;
Re - критерий Рейнольдса;
Nu - критерий Нуссельта.
Геометрические характеристики
δ - толщина, зазор;
S - шаг;
σ - относительный шаг;
D, d - диаметр;
n - число трубок, слоёв;
F - площадь сечения;
П - периметр;
Н - площадь поверхности теплообмена;
h - высота поверхности теплообмена.
ПГ - парогенератор;
ТН - теплоноситель;
РТ - рабочее тело;
ЦНПК - циркуляционный насос первого контура;
ПВ - питательная вода;
КПС - конденсатно-питательная система;
СЯЭУ - судовая ядерная энергетическая установка;
АЗ - активная зона;
ВВРД - водо-водяной реактор под давлением;
ТВС - тепловыделяющая сборка;
ТВЭЛ - тепловыделяющий элемент;
РК - рабочий канал;
ЦРК - центральный рабочий канал;
ППУ - паропроизводящая установка;
СКО - система компенсации объема;
ИОФ (ИФ) - ионообменный фильтр.
Спроектировать корабельную (судовую) паропроизводящую установку на следующие параметры:
общая паропроизводительность D =297600 кг/с
температура перегретого пара на выходе из ПГ tпе =305 ˚С
давление перегретого пара на выходе из ПГPпе =3,3 МПа
давление ТН Pт =13,2 МПа
гидравлическое сопротивление тракта РТ
на экономайзерном участке Δ Pэк =0,145 МПа
гидравлическое сопротивление тракта РТ
на испарительном участке Δ Pисп =0,092 МПа
гидравлическое сопротивление тракта РТ
на пароперегревательном участке Δ Pпе =0,066 МПа
давление в конденсаторе Pк = 0,007 МПа
Задание выдано “ ” 200 г.
Срок защиты проекта “ ” 200 г.
Руководитель проекта: Клюшин Н.М.
Студент: Беляков А.А.
Судовой ядерной энергетической установкой называется комплекс оборудования, который на основе использования и преобразования ядерной энергии обеспечивает движение и обитаемость судна, а также выполнение всех технологических операций, обусловленных функциональным назначением судна.
Особенностью СЯЭУ является:
очень высокая энергоёмкость ядерного топлива;
возникновение мощных полей ионизирующих излучений;
накопление значительных количеств (по активности) радиоактивных отходов.
Получение ядерной энергии и её преобразование в тепловую энергию осуществляется в реакторной установке. Преобразование тепловой энергии в механическую или электрическую осуществляется в паротурбинной (ПТУ) установке, в электроэнергетической установке (ЭЭУ), в общесудовых системах и механизмах (ОССиМ). Передача энергии на движители (винты) в зависимости от назначения и условий эксплуатации судна осуществляется через гребную электрическую установку. ЭЭУ предназначена для выработки и обеспечения электроэнергией потребителей СЯЭУ и общесудовых потребителей.
Рис.1.1 Состав судовой ЯЭУ.
За основу принята двухконтурная пароэнергетическая установка, в состав которой входит реактор с водяным теплоносителем. Данный тип ЯЭУ является основным из применяемых на судах. Принципиальная схема такой установки приведена на рисунке 1.2
Рис.1.2 Принципиальная схема СЯЭУ
Основным компонентом двухконтурной пароэнергетической установки является водо-водяной реактор 1, у которого замедлителем и теплоносителем служит вода. Рабочим теплоносителем паротурбинной установки (ПТУ) является водяной пар, перегретый или насыщенный, генерируемый в парогенераторе 5. Передача тепловой энергии выделяемой в активной зоне реактора, рабочему телу осуществляется комплексом оборудования, объединяемым общим понятием первый контур ЯЭУ.
В состав первого контура помимо реактора и парогенератора входят:
циркуляционные насосы первого контура 4,трубопроводы 3,оборудование, обеспечивающее компенсацию изменения объёма теплоносителя и создания избыточного давления, состоящее из компенсаторов объёма 2 и реверсивных газовых баллонов 6,оборудование необходимое для очистки теплоносителя от возможных примесей ускоряющих коррозионное разрушение внутренних поверхностей первого контура и повышающих радиоактивность теплоносителя.
Оборудование первого контура обслуживается рядом систем, из которых особо важную роль играет система охлаждения, обычно выполняемая по двухконтурной схеме.
Радиоактивное оборудование обычно размещено под биологической защитой 7, которая снижает радиоактивность излучения до безопасного для обслуживающего персонала уровня предусмотренного нормами предельно допустимых излучений.
Водяной пар по паропроводу 11 направляется к главной турбине, где часть заключённой в ней энергии тепловой преобразуется в механическую, проводимую затем к винту. Помимо главной турбины на судне имеются другие потребители пара, главные из них - турбины судовой электростанции. Отработавший в турбине пар собирается в конденсаторе 9, и конденсат поступает в конденсатную систему 8, где очищается от примесей, а затем направляется в парогенератор.
Помимо перечисленного в состав паротурбинной установки входит многочисленное оборудование, выполняющее вспомогательные функции. Это оборудование объединено в ряд систем.
Паропроизводящая установка (ППУ) ледокола состоит из двух идентичных автономных блоков. В каждый из них входят один реактор, четыре парогенератора (ПГ) и четыре циркуляционных насоса первого контура (ЦНПК), составляющие первый контур. Соединение реактора ПГ и гидрокамер ЦНПК выполнено при помощи коротких силовых патрубков типа “труба в трубе", так что создаётся единая жёсткая конструкция - блок.
Применение блочной компоновки позволяет иметь ряд преимуществ по сравнению с раздельным размещением оборудования ППУ применявшееся только на первых атомных судах. При блочной компоновке уменьшаются габариты ППУ и биологической защиты и масса установки в целом. Снижаются гидравлические сопротивления циркуляционного насоса в целом. Снижаются гидравлические сопротивления циркуляционного тракта первого контура, что позволяет уменьшить требуемый напор ЦН и улучшить условия для создания естественной циркуляции теплоносителя при остановке насосов. Повышается радиационная безопасность ППУ, т.к уменьшается вероятность разрыва трубопроводов большого диаметра вследствие снижения их протяжённости и числа сварных соединений. Появляется возможность собирать блок ППУ непосредственно в цехе с последующей погрузкой на судно, что улучшает условия труда сборщиков и повышает качество монтажа и контроля.