3.6.3 Сопоставление вариантов и определение экономического эффекта
Согласно действующей типовой методике лучшим является вариант, имеющий меньшую величину приведенных затрат Пi:
;где Кi - капитальные вложения на противопожарную защиту по i-му варианту, руб.; Ен - нормативный коэффициент экономической эффективности
капитальных вложений, принимаемый в целом по народному хозяйству на уровне не ниже 0,12 1/год; Ci - эксплутационные расходы на противопожарную защиту i-го варианта, руб./год; Уi - среднегодовой ущерб от пожара по i-му варианту, противопожарной защиты руб./год; i - количество вариантов (I = 1,2,....n).
В нашем случае имеем следующие величины основных показателей по вариантам:
• 1 вариант К1 = 0; С1 = 0; У1 = 86859 руб./год;
• 2 вариант К2 = 24000; Ен =0,15 1/год; С2= 11671; У2= 22097,6. Определяем приведенные затраты по вариантам:
• 1 вариант П1 =Уcp1 = У1 = 86859 руб./год;
• 2 вариантП2 = К2ЕН+С2+У2= 24000·0,15+ 11671+ 22097,6 = 373686. Приведенные затраты по 2 варианту меньше чем, по 1 варианту,
следовательно применение дренчерного орошение резервуара с СУГ.
Годовой экономический эффект Эг от применения дренчерного орошения резервуара с СУГ определяют как разность приведения затрат рассматриваемых вариантов:
Эг=П1 - П2 ;
Эг=86859-37368,6 = 49490,4 руб.
Итак, годовой экономический эффект от применения дренчерного орошения резервуара с СУГ на одном объекте составит 49490,4 руб.
3.7 Гидравлический расчет дренчерной установки охлаждения
резервуара с СУГ
3.7.1 Определяем исходные данные для расчета
Размеры защищаемого участка 7 х 10 м. Длина подводящего трубопровода 10 м. Защищаемый объект и станция пожаротушения находятся на одной отметке. Насосы запитаны от водопровода с гарантированным напором в сети. Нподв= 12 м. Интенсивность орошения водой IН = 0,5 л/сек-м (пункт 25 Приложения 6 НПБ 111-98). Площадь орошения дренчерным оросителем Fop = 12м2.
3.7.2 Производим трассировку трубопроводов и оросителей на плане защищаемого объекта
Производим трассировку трубопроводов на плане защищаемого объекта. В результате получаем, что фактическая площадь орошения Fop = 10м2.
Рис. 11 Трассировка трубопроводов и оросителей
3.7.3 Выбираем тип оросителя и его основные параметры
Для этого определим требуемый напор Н1 и расход Q1 на диктующем оросителе для двух типоразмеров и сравним полученные значения интенсивности орошения по следующим формулам:
; .где Iн= 0,5 л/сек·м2 интенсивность орошения водой; Fop=10 м - площадь орошения дренчерным оросителем; Н1 - напор на диктующем оросителе, м; Q1 - расход на диктующем оросителе, л/сек. Результаты расчета сведены в таблицу 17.
Тип оросителя | ДВНо15-01 | ДВНо20-01 |
НMIN | 10 | 10 |
К, л/(сек·м0,5) | 0,71 | 1,25 |
НТРЕБ, м | 50 | 16 |
Н1,м | 50 | 16 |
Q1, л/сек | 5 | 5 |
IРАСЧ , л/сек ·м 2 | 0,5 | 0,5 |
На основании полученных расчетов принимаем в установке дренчерные оросители типа ДВНо20-01.
3.7.4 Определяем диаметры трубопровода
• Определяем диаметр трубопровода на участке от первого до второго оросителя:
;где V - скорость движения воды по трубам (рекомендуется V=3-5 м/сек), принимаем V=3 м/сек; Q1 =Q2 - расход на диктующем оросителе, л/сек.
Принимаем трубы стальные электросварные и по таблице 3 Приложения 6 [16] для dy = 50 мм определяем значение Кт = 110.
• Определяем напор в точке "а":
• Определяем диаметр трубопровода на участке "а-б":
Принимаем трубы стальные электросварные и по таблице 3 Приложения 6 [16] для dy= 65 мм определяем значение КТ = 572.
• Определяем напор в точке "б":
• Определяем расход из оросителей 3 и 4:
• Определяем диаметр трубопровода на участке от третьего до четвертого оросителя:
где V - скорость движения воды по трубам (рекомендуется V = 3-5 м/сек), принимаем V = 3 м/сек; Q1 = Q2 - расход на диктующем оросителе, л/сек.
Принимаем трубы стальные электросварные и по таблице 3 Приложения 6 [16] для dy = 50 мм определяем значение Кт = 110.
• Определяем диаметр трубопровода на участке "б-в":
;Принимаем трубы стальные электросварные и по таблице 3 Приложения 6 [16] для dy = 100 мм определяем значение Кт = 4322.
• Определяем напор в точке "в":
• Определяем расход из оросителей 5 и 6:
• Определяем диаметр трубопровода на участке от пятого до шестого оросителя:
Принимаем трубы стальные электросварные и по таблице 3 Приложения 6 [16] для dy = 50 мм определяем значение Кт = 110.
• Определяем диаметр трубопровода на участке "в-г":
Принимаем трубы стальные электросварные и по таблице 3 Приложения 6 [16] для dy = 125 мм определяем значение Кт = 13530.
• Определяем напор в точке "г":
Результаты расчета сведены в таблице 18
Таблица 18
Номер участка или точки | Длина участка 1, м | dy, мм | Кт | Н, м | Q, л/сек |
а | - | - | - | - | - |
а-б | 4 | 65 | 572 | - | 10,0 |
б | - | - | - | 18,1 | 10,2 |
б-в | 4 | 100 | 4322 | - | 20,2 |
в | - | - | - | 18,5 | 10,3 |
в-г | 4 | 125 | 13530 | - | 30,5 |
г | - | - | - | 18,6 | - |
3.7.5 Определяем требуемый напор у основного водопитателя
(на насосе):
; м,где hлин - суммарные потери напора в сети, м; hКЛ - потери напора в клапане узла управления принимаем в установке клапан КЗУ-100; z - разность отметок "диктующего" оросителя и оси напорного патрубка водопитателя.
м,