Курсовая работа по курсу: “Электроника”
Московский Авиационный Институт имени Серго Орджоникидзе
Кафедра 301
Москва 2000 год.
Схема устройства:
R1
Uп Uвх - - VT1 R2 RH C2 R4 R7VT2 VT3
T1 T2
C1 R3 R6 C3
Технические данные:
Напряжение питания схемы: Eп = ± 27В
Условия эксплуатации: температура, °С (-50 ÷ +60)
Частота работы схемы: f =
ГцВременные диаграммы.
Введение.
Данное устройство предназначено для фазоимпульсной модуляции.
Генератор пилообразного напряжения выполнен на транзисторе VT1 и двухбазовом диоде (или однопереходном транзисторе) VT2, конденсаторе С1 и резисторе R3.
Угол отсечки регулируется с помощью второго однопереходного транзистора VT3, на котором также построен генератор импульсов.
Схема довольно проста, легко настраивается и перестраивается, обладает высокой надежностью.
Применяется для регулирования тока (напряжения) накала в печах.
Краткое описание работы.
Схему можно разбить на три основных функциональных блока.
Генератор пилообразного напряжения, построенный на транзисторе VT1, конденсаторе С1 и резисторе R1, вырабатывает импульсы, подаваемые на однопереходный транзистор ОПТ, который в свою очередь открывает на время
транзистор VT4, обеспечивающий подачу импульсов продолжительности t на нагрузку RH. Для фазовой модуляции импульсов используется схема на ОПТ VT3.2.2.Описание работы генератора пилообразного напряжения.
При подключении напряжения UBX на транзистор VT1 конденсатор С1 начинает заряжаться через транзистор и резистор R1 до напряжения U(t1),определяемого величиной напряжения включения ОПТ.
Зарядившись до указанной величины конденсатор С1 начнет разряжаться через ОПТ VT2 и резистор R3.
2.3.Описание работы генератора импульсов.
При подаче напряжения на транзистор VT1 тиристор VT4 и двухбазовый диод (ОПТ) VT2 остаются запертыми, а конденсатор С1 начнет заряжаться через открытый транзистор VT1 и резистор R1. При достижении величины напряжение UЭ ВКЛ , при котором эммиттер - база 1 ОПТ VT2 окажется открытым. В этот момент включается VT2 и конденсатор С1 разряжается через цепь эмиттер-база1 VT2 и резистор R3.
Импульс, снимаемый с этого резистора, отопрет тиристор VT4 и напряжение источника питания окажется приложенным к нагрузке. Пока ток нагрузки IH>IУД тиристор остается открытым. Длительность задержки:
.Когда открыт VT4, ток через нагрузку RH заряжает конденсатор С2 по цепи R4-C2-VT4. После заряда конденсатора С2 и отпирания VT5 от генератора модулирующего сигнала, конденсаторС2 подключается параллельно тиристору. Продолжительность заряда
.При этом положительная обкладка конденсатора С2 окажется подключенной к катоду, а отрицательная – к аноду. Т.о. к прибору прикладывается обратное напряжение . В цепи, образованной конденсатором VT5 и тиристором VT4 возникает обратный ток, который проходит через прибор в обратном направлении. Когда результирующий ток прибора становится меньше IУД, последний запирается.Должно быть
Емкость
,где IПР А - прямой ток нагрузки τВЫКЛ, мкс.
При этом заряд одного импульса тока
, где Е=UПtТС мин для VT4, мкс 0,707С2R4
Если варьировать моментом отпирания тиристора, то ток через прибор и нагрузку будет протекать только в течение какой-то определенной части импульса. Так при небольшой задержке тиристор может быть отперт в начале импульса, при больших задержках – в любой точке импульса, либо в его конце. Тем самым можно регулировать средний за период ток, проходящий в нагрузке, от максимального почти до нуля. Такой способ управления называется фазовым регулированием или фазовым управлением, фазовым модулированием поскольку при этом изменяется сдвиг фаз между импульсом и началом протекания прямого тока.
Математическая модель устройства.
Генератор первообразного напряжения.
Рассмотрим процесс заряда – разряда емкости С1 в импульсном режиме.
(1)