9.3 Разработка комплекса защитных мероприятий
9.3.1 Расчет освещенности
Уровень освещения определяется степенью точности зрительных работ по нормам освещенности СНиП 23-05-95 и отраслевым нормам.
Проведем расчет системы искусственного освещения, пользуясь методом коэффициента использования. Расчетным уравнением метода коэффициента использования светового потока является:
(9.1)где F - расчетный световой поток (лм) всех ламп, которые необходимо установить в светильниках для получения требуемой освещенности в горизонтальной плоскости;
E - минимальная нормируемая освещенность, E=400 лк;
k - коэффициент запаса, k=1,3;
S - площадь освещаемого помещения, м2;
h - коэффициент использования светового потока (долях единицы);
z - отношение средней освещенности к минимальной, обычно z=1,1...1,2, в расчетах принимаем z=1,1.
Коэффициент использования светового потока h зависит от типа светильника, коэффициентов отражения светового потока от стен rс=50 процентов, потолка rп=30 процентов, rпола=50 процентов, а также геометрических размеров помещения и высоты подвеса светильников, что учитывается одной комплексной характеристикой - индексом помещения.
Величина индекса помещения подсчитывается по формуле:
(9.2)где S - площадь помещения, м2;
A и B - длинна и ширина помещения, A =6 метров, B=4 метров;
h - высота подвеса светильника над расчетной поверхностью, h=2,3 метра.
.Определяем коэффициент использования светового потока h=0,51.
Тогда величина светового потока F равна:
лм.Определим расстояние между рядами светильников используя соотношение:
, (9.3)где x - для большинства светильников x=1,3 - 1,4 принимаем x=1,4.
м.Расстояние между стенами и крайними рядами принимаем равным l=(0,3...0,5)L, l=0,3*4=1,2. При ширине помещения B=4 имеем число рядов светильников:
. (9.4)Определим число светильников в одном ряду:
(9.5)где lсв- длинна светильника, lсв=0,5 метра.
шт.Таким образом, общее число светильников N:
шт. (9.6)Определим требуемый световой поток одной лампы:
лм. (9.7)Выбираем тип лампы устанавливаемой в светильники, нам подходит люминесцентная лампа ЛД-18 с номинальным световым потоком Fлн=880 лм.
Подсчитаем расчетную освещенность в помещении при выбранных нами лампах по следующей формуле:
(9.8) лм.Из результатов расчета видно, что выбранная система освещения обеспечивает требуемую освещенность рабочего места проектировщика.
В результате можно сделать вывод о том, что все вышеприведенные требования по безопасности полностью выполняются.
9.3.2 Расчет воздухообмена
Расчет потребного воздухообмена для удаления избыточного тепла производиться по формуле:
, (9.9)где Q – потребный воздухообмен, (м3/ч);
L изб – избыточное тепло, (ккал/ч);
ζ в – идеальная масса приточного воздуха (ζ в = 1,206 кг/м3);
С в - теплоёмкость воздуха (С в = 0,24 ккал/кг град);
Δt – разница температуры удаляемого воздуха и приточного воздуха.
Количество избыточного тепла расчитывается по формуле:
где L об – тепло, выделяемое оборудованием;
L осв – тепло, выделяемое системой освещения;
L л – тепло, выделяемое людьми в помещении;
L р – тепло, вносимое за счет солнечной радиации;
L отд - теплоотдача естественным путём.
Количество тепла, выделяемое оборудованием находится по формуле:
(9.11)где P об - мощность потребляемая оборудованием;
ψ1 - коэффициент перехода тепла в помещении.
Потребляемая оборудованием мощность определяется по формуле:
, (9.12)где P ном – номинальная мощность (кВт);
ψ2 - коэффициент использования установленной мощности, учитывающий превышение номинальной мощности над фактически необходимой;
ψ3 – коэффициент загрузки, т.е. отношение величины среднего потребления мощности к максимальной необходимой;
ψ4 – коэффициент одновременности работы оборудования.
При ориентировочных расчетах произведение всех четырех расчетов можно принять равным 0,25.
Для одного компьютера установленная мощность P ном = 0,4 кВт.
Расчет производится с семью компьютерами, следовательно, мощность равна:
.Количество тепла, выделяемое оборудованием будет:
.Количество тепла, выделяемого системой освещения определяется по формуле:
, (9.13)где α – коэффициент перевода электрической энергии в тепловую (α = 0,46-0,48, для люминисцентрых ламп);
β – коэффициент одновременности работы (при работе всех светильников β = 1);
cosφ – коэффициент мощности (cosφ = 0,7 - 0,8).
Мощность осветительной установки можно найти по формуле:
, (9.14)где 0,03 – мощность одной осветительной установки (кВт);
n – количество ламп (n = 24).
Найдем мощность осветительной установки:
.Количество тепла, выделяемого системой освещения будет равна:
.Количество тепла, выделяемое людьми расчитывается по формуле:
, (9.15)где n л – количество человек;
q л – тепловыделение одного человека.
Категория работы легкая и t = 25°С. Найдем количество тепла, выделяемое людьми:
.Количество тепла вносимое при помощи солнечной радиации расчитывается по формуле:
, (9.16)где m – количество окон;
F – площадь окна;
qост – солнечная радиация, проникшая в помещение через остеклённую поверхность (q ост = 65ккал/ч).
Высота окна h = 3м, ширина L =1,5м.
Площадь окна равна 4,5 кв.м.
Найдем количество тепла вносимое при помощи солнечной радиации:
.Если нет никаких дополнительных условий то можно считать, что Lотд = Lрад. Примем Lотд = 0 ккал/ч. Найдем количество избыточного тепла по формуле 9.10:
Δt выбирается в зависимости от теплонапряженности воздуха Lн, которая находится по формуле;
, (9.17)где Vн – внутренний объем помещения (Vн = 133 м3).
Следовательно, L н =13,2 ккал/ч.
При L н < 20 ккал/м3 ч, Δt = 6°С.
Найдем потребный воздухообмен по теплоизбыткам от машин, людей, солнечной радиации и искусственного освещения:
.Найдем кратность воздухообмена по формуле:
.Кратность воздухообмена не превышает 10, следовательно воздухообмен соответствует установленным требованиям.
9.3.3 Расчет защитного заземления
Для расчёта сначала определим климатическую зону и тип грунта у здания, где расположена лаборатория с электроприборами. Средняя многолетняя температура в январе составляет от -15°С до -20°С, а летняя средняя составляет: от +16 до +18 °С, количество дней замерзания воды составляет 150. Поэтому определим коэффициенты для дальнейшего расчёта: 1.9 – для вертикальных электродов и 6 – горизонтальных электродов.
тип грунта заземления – глина, тогда длина электрода (трубы) составит 2м;
глубина залегания составит тоже 2 м. диаметр трубы – 0,05м. ширина соединяющей металлической полосы составит0,05м;
мощность электроустановок составит: не более 1 кВт;
удельное сопротивление глины
;напряжение установки – менее 1000В;
сопротивление заземляющего устройства – не более 10 Ом.
Данные для расчёта:
b = 5см – ширина полосы;
lэ = 200 см – длина трубы;
hЭ = 200см – глубина залегания трубы;
dЭ = 5см – диаметр трубы;
КВ = 1,9 – коэффициент повышения верт. электродов;
Кг =6 - то же самое, но для гориз. электродов;
hn =200см – глубина залегания полосы, соед. электроды;