Для случая
Тогда:
Тогда
Подставим все известные величины в исходное уравнение:
Решим данное уравнение с помощью программного пакета MathCAD 13.
Расчет температуры
В результате получим:
2. Определим максимальное давление сгорания
Цель расчёта процесса расширения – определение давления
1. Находим давление в конце такта расширения:
2.Находим температуру в конце такта расширения:
1. Индикаторное давление
где
Тогда:
2. Определяем индикаторный КПД.
3. Удельный индикаторный расход топлива равен
1. Среднее эффективное давление
где
Эффективный КПД нагнетателя:
Тогда
Среднее давление механических потерь
Для определения
где
Среднее эффективное давление:
2. Механический КПД
3. Значение эффективного КПД
4. Удельный эффективный расход топлива
1. Рабочий объем цилиндра двигателя
2. Определяем диаметр цилиндра
Значение m принимаем по прототипу
3. Ход поршня
4. Общий рабочий объем двигателя
5. Проверяем правильность расчетов основных размеров двигателя
Цель динамического расчета состоит в построении по данным теплового расчета индикаторной диаграммы и нахождении сил, действующих на все звенья кривошипно-шатунного механизма.
Выполнение динамического расчета авиационного поршневого двигателя связано с довольно большим объемом расчетной работы, поэтому целесообразно проводить его на ЭВМ. Особенность такого расчета – учет в нем главного динамического эффекта, создаваемого прицепными механизмами, - сил второго порядка. Динамический расчет звездообразного двигателя без учета этих сил неприемлем, поскольку при этом создается ложное впечатление об уравновешенности механизма и о запасах прочности коленчатого вала, редуктора и воздушного винта.
1. Учитываем только силы избыточного давления газов на поршень и силы инерции КШМ.
2. Индикаторные диаграммы во всех цилиндрах считаем одинаковыми. Теоретические диаграммы корректируем только в точке, соответствующей концу сгорания.
В конце сжатия и расширения диаграммы не корректируем. Считаем, что в течение насосных ходов газовые силы пренебрежимо малы по сравнению с силами инерции КШМ. Поэтому в тактах всасывания и выхлопа газовые силы считаем равными нулю.
3. Предполагаем геометрическое подобие деталей КШМ проектируемого двигателя и прототипа.
4. Для расчета сил инерции реальное распределение масс в КШМ приводим к расчетной схеме, в которой все массы считаем точечными, сосредоточенными на осях поршневых пальцев и оси шатунной шейки коленчатого вала.
5. Приведенные массы поступательно-движущихся частей в цилиндре с главным и прицепным шатунами считаем одинаковыми.
6. Отличия в кинематике и динамике прицепных механизмов от центрального не учитываем вплоть до заключительного этапа динамического расчета. На заключительном этапе динамического расчета учитываем главный динамический эффект, создаваемый прицепными механизмами.
2.2 Определение основных размеров КШМ
Схема кривошипно-шатунного механизма с прицепными шатунами показана на рисунке 2.
Рисунок 2 Схема кривошипно-шатунного механизма с прицепными шатунами.
Ход поршня
Основные размеры центрального КШМ вполне определяются радиусом
Угол прицепа:
Радиусы прицепов