da1=d1+2m =94+2·2=98 мм
df1=d1-2,5m = 94-2,5·2 =89 мм
колеса
da2=d2+2m =306+2·2 =310 мм
df2=d2-2,5m =153-2,5·2=148 мм
8. Определяем ширину шестерни и колеса.
Ширину колеса находим по формуле (с.41 [1]) :
b2=
·где
- межосевое расстояние, мм; - коэффициент ширины венца колеса, равный 0,28...0,36 — для шестерни, расположенной симметрично относительно опор, принимаем =0,3 (с. 13 [2]).b2=200·0,3 =60 мм
Ширина шестерни больше на (3÷8) мм чем у колеса
b1= b2+(3÷8)=60+5=65 мм.
Таким образом, найденные диаметры определены, верно.
Определяем силы в зацеплении:
Окружная сила направлена по касательной в точки касания колеса и шестерни.
(4.11)
где Т2 - вращающий момент на 2 промежуточном валу, Н·м;
d2 – делительный диаметр шестерни, мм.
НРадиальная сила направлена к центру окружности и определяется по формуле (с.19 [2]) :
(4.12)
где α – между геометрической суммой радиальной и осевой силами,
β- угол наклона зубьев, tg β=0,364.
НПроверяем зубья колес по напряжениям изгиба. Должно выполняться неравенство
Для колеса
(4.13)
где
- коэффициент, учитывающий распределение нагрузки между зубьями. (с.15 [2]), =1; - коэффициент динамической нагрузки, зависящий от окружной скорости колес и степени точности передачи (с.16 [2]), =1,4; - коэффициент неравномерности нагрузки по длине зуба (с.16 [2]), =1,25; - коэффициент, учитывающий наклон зуба, = ; - коэффициенты формы зуба шестерни и колеса (с.16 [2]), =3,61. МпаДля шестерни
(4.14)где
- коэффициенты формы зуба шестерни и колеса (с.16 [2]), =3,61; - коэффициенты формы зуба шестерни и колеса (с.16 [2]), =3,88; - напряжение изгиба на колесе, Мпа. МпаТак как [σ]F1=547,83 МПа, [σ]F2=495,65 МПа и σF1=233,67 МПа, σF2=217,41 МПа , то колеса прошли проверку по напряжениям на изгиб.
Проверяем зубья колес по контактным напряжениям .
где
, , -коэффициенты учитывающие распределение нагрузки между зубьями, неравномерность распределения нагрузки по длине контактной линии, дополнительные динамические нагрузки, так как редуктор рассчитан на долгий срок службы, то =1, =1, =1 . =491,28 МПаКолеса недогружены на 0,88%.
При определении погрешности передаточного числа, получили Δi= 1,5% , что позволяет сделать вывод- передаточное число выбрано, верно.
Так как[σ]F1=547,83 МПа, [σ]F2=495,65 МПа и σF1=233,67 МПа, σF2=217,41 МПа то колеса прошли проверку по напряжениям на изгиб.
В результате расчетов определили, что
0,88% недогрузки. Это величина не превышает допустимого значения (5 % перегрузки и 10 % недогрузки), следовательно, колеса прошли проверку по контактным напряжениям.В результате проверочного расчета убедились, что полусумма делительных диаметров равна межосевому расстоянию.
Определить основные размеры валов редуктора предварительно.
Рисунок 5.1 – Схемы для расчета a) быстроходного вала; b) 1 промежуточного вала; c)2 промежуточного вала; d) тихоходного вала.
Крутящий момент быстроходного вала – 22,8 Н·м
Крутящий момент 1 промежуточного вала –54,2 Н·м
Крутящий момент 2 промежуточного вала – 220,1 Н·м
Крутящий момент тихоходного вала – 697,4 Н·м
Расчет валов ведем по заниженным допускаемым напряжениям на чистое кручение.
Расчет быстроходного вала ведется по следующим формулам
где Т- крутящий момент на валу, Н·м;
- диаметр входного конца вала, мм;
- диаметр вала под подшипники, мм;
- диаметр вала под колесо, мм.
мм
Для того чтобы вести дальнейший расчет необходимо выбрать стандартный диаметр входного конца вала под муфту. Выбираем упругую муфту с торообразной оболочкой. Муфта выбирается по диаметру выходного вала двигателя (
мм). Тогда =25 мм.мм
мм
мм
Так как при расчете значение оказалось меньше, чем значения валов применяемых в практике, то принимаем = 30 мм.