Смекни!
smekni.com

Дуговая сталеплавильная печь (стр. 4 из 9)

2.2 Электрододержатель

Электродержатель служит для подвода тока к электроду (катоду) и для зажима электродов. Головки электрододержателя делают из бронзы или стали и охлаждают водой, так как он сильно нагревается как теплом из печи, так и контактными токами. Электрододержатель должен плотно зажимать электрод и иметь небольшое контактное сопротивление. В данной печи применяется пружинно-пневматический электрододержатель.

Зажим электрода осуществляется при помощи неподвижного кольца и зажимной плиты, которая прижимается к электроду пружиной. Отжатие плиты от электрода и сжатие пружины происходят при помощи сжатого воздуха. Электрододержатель крепится на металлическом рукаве-консоли, который скрепляется с Г - образной подвижной стойкой в одну жесткую конструкцию. Стойка может перемещаться вверх или вниз внутри неподвижной коробчатой стойки. Перемещение подвижной телескопической стойки происходит с помощью гидравлических устройств. Механизм перемещения электрода должен обеспечить быстрый подъем электрода в случае обвала шихты в процессе плавления, а также плавное опускание электрода во избежание его погружения в металл или ударов о не расплавившиеся куски шихты. Скорость подъема электрода составляет 6,0 м/мин, скорость опускания 2,0 м/мин.

2.3 Механизм наклона печи

Механизм наклона печи должен плавно наклонять печь в сторону выпускного отверстия на угол 40 - 45° для выпуска стали и на угол 10 - 15 градусов в сторону рабочего окна для спуска шлака. Станина печи, или люлька, на которой установлен корпус, опирается на два опорных сектора, которые перекатываются по горизонтальным направляющим. В секторах имеются отверстия, а в направляющих – зубцы, при помощи которых предотвращается проскальзывание секторов при наклоне печи. Наклон печи осуществляется гидравлическим приводом. Два цилиндра укреплены на неподвижных опорах фундамента, а штоки шарнирно связаны с опорными секторами люльки печи.

2.4 Система загрузки печи

Загрузка печи осуществляется через верх при помощи бадьи. При загрузке печи сверху в один – два приема в течение 5 мин меньше охлаждается футеровка, сокращается время плавки; уменьшается расход электроэнергии; эффективнее используется объем печи. Для загрузки печи свод приподнимают на 150 - 200 мм над кожухом печи и поворачивают в сторону вместе с электродами, полностью открывая рабочее пространство печи для введения бадьи с шихтой.

2.5 Свод печи

Свод печи подвешен к раме. Она соединена с неподвижной стойкой электрододержателя в одну жесткую конструкцию, покоящуюся на поворотной консоли, которая укреплена на опорном подшипнике. Крупные печи имеют поворотную башню, в которой сосредоточены все механизмы отворота свода. Башня вращается вокруг шарнира на катках по дугообразному рельсу. Бадья представляет собой стальной цилиндр, диаметр которого меньше диаметра рабочего пространства печи. Снизу цилиндра имеются подвижные гибкие сектора, концы которых стягиваются через кольца тросом. Взвешивание и загрузка шихты производятся на шихтовом дворе электросталеплавильного цеха. Бадья на тележке подается в цех, поднимается краном и опускается в печь. При помощи вспомогательного подъема крана трос выдергивают из проушин секторов и при подъеме бадьи сектора раскрываются и шихта вываливается в печь в том порядке, в каком она была уложена в бадье. Во время плавления электрод прорезает в шихте колодец, на дне которого накапливается жидкий металл.

2.6 Газоотсос

Современные крупные сталеплавильные дуговые печи во время работы выделяют в атмосферу большое количество запыленных газов. Применение кислорода и порошкообразных материалов еще более способствует этому. Содержание пыли в газах электродуговых печей достигает 10 г/м3 и значительно превышает норму. Для улавливания пыли производят отсос газов из рабочего пространства печей мощным вентилятором. Для этого в своде печи делают четвертое отверстие с патрубком для газоотсоса. Патрубок через зазор, позволяющий наклонять или вращать печь, подходит к стационарному трубопроводу. По пути газы разбавляются воздухом, необходимым для дожигания СО. Затем газы охлаждаются водяными форсунками в теплообменнике и направляются в систему труб Вентури, в которых пыль задерживается в результате увлажнения. Применяют также тканевые фильтры, дезинтеграторы и электрофильтры.


3. РАСЧЕТ ЭНЕРГИИ НА РАСПЛАВЛЕНИЕ

Удельную (на 1 т жидкой стали) полезную энергию Wпол, кВт×ч/т расчитываем с учетом угара металла при расплавлении и перегрева металла и шлака выше температуры плавления стали [7].

(3.1)

где kуг = 0,055 – коэффициент угара;

tпл = 1510 ºC – температура плавления стали;

tпер = 50 ºC – температура перегрева стали;

tо = 10 ºС – среднегодовая температура шихты;

qст = 79 кВт·ч/т – скрытая теплота плавления стали;

qшл= 58 кВт·ч/т – скрытая теплота плавления шлака;

C1 = 0,195 кВт·ч/т·К –удельная теплоемкость твердой стали;

C2 = 0,232 кВт·ч/т·К –удельная теплоемкость жидкой стали;

C3 = 0,340 кВт·ч/т·К –удельная теплоемкость шлака.

Вся полезная энергия на печь, МВт×ч:

(3.2)

где G = 50 т – номинальная емкость печи.


4. ОПРЕДЕЛЕНИЕ ОСНОВНЫХ РАЗМЕРОВ

ПЛАВИЛЬНОГО ПРОСТРАНСТВА

Ванна печи имеет сфероконическую форму. Объем конус, занятый жидким металлом, ограничивается уровнем C; выше него лежит уровень шлака, а еще выше – уровень порога рабочего окна B. Таким образом, между уровнями верхней поверхности шлака и порога рабочего окна (определяющего максимальную вместимость ванны) предусмотрен дополнительный объем на случай всплесков шлака, перегрузки печи, небольшого случайного ее наклона или перекоса.

Основные размеры плавильного пространства печи определяем исходя из ее заданной номинальной емкости (массы жидкой стали) G, т (см. /4/).

Объем стали в ванной равен

(4.1)

где a = 0,14 м3/т – удельный объем жидкой стали.

Полный объем ванны до порога рабочего окна:

(4.2)

где b = 0,075 – масса шлака в долях массы стали;

с = 3,0 т/м3 – плотность жидкого шлака;

e = 0,125 – дополнительный объем ванны в долях объема жидкой стали.

Полная высота ванны:

(4.3)

где A = 0,34.

Высота ванны складывается из высоты ее конусной H1 = 0,8·H = 0,723 м и сферической H2 = 0,2·H = 0,181 м частей.

Диаметр ванны на уровне порога рабочего окна:

(4.4)

Диаметр плавильного пространства на уровне откосов равен

(4.5)

где DH = 0,12 м.

От уровня откосов начинается плавильное пространство печи. Объем плавильного пространства намного превосходит объем ванны печи и определяется следующими соображениями [4]:

1. Высота плавильного пространства то уровня металла до свода должна обеспечить удовлетворительную работу свода. Чем она больше, тем лучше экранирован свод от прямого излучения дуги, тем меньше температура свода, тем дольше он будет работать.

2. Высота от уровня порога рабочего окна до свода должна обеспечить нужные размеры окна, возможность перекрытия окна аркой и размещения над ним кольца жесткости.

3. Объем плавильного пространства должен позволять загружать всю шихту в один прием при объемной массе 1,5 – 1,6 т/м3, когда ее объем превосходит объем жидкого металла.

4. Чем выше расположен свод, тем больше наружная поверхность печи и выше ее тепловые потери, тем больше длина и ход электрода, что увеличивает электрические потери в них и утяжеляет конструкцию печи. В виду этого при определении высоты плавильного пространства придерживаются средних значений, проверенных на работе действующих печей.

Высота плавильного пространства:

(4.6)

Стрела свода:

(4.7)

Размер рабочего окна определяется размерами мульд загрузочной машины или других заправочных приспособлений, возможностью заправки через него подины и стен по всему периметру печи и наблюдения за их состоянием и состоянием свода.

Ширина рабочего окна:

(4.8)

где p = 0,25.

Высота рабочего окна:

(4.9)

Стрела арки рабочего окна:

(4.10)

Толщина подины равна:

(4.11)

Диаметр кожуха печи Dk превосходит диаметр плавильного пространства D1 на двойную толщину футеровки у основания стен: