Смекни!
smekni.com

Диференціальний вихорострумовий перетворювач для контролю параметрів немагнітних виробів (стр. 2 из 5)

Розроблені абсолютні і диференціальні методи і реалізуючі їх електромагнітні перетворювачі, методика оцінки апаратурних і методичних похибок, схеми включення ТЕМП, ПЕМП і КЕМП для спільного визначення радіуса а та електропровідності s, а також залежних від цих параметрів інших фізичних величин, були впроваджені на ВО "Запорізька АЕС".

Результати даної дисертації були використані у навчальному процесі за спеціальністю 7.090903 – прилади і системи неруйнівного контролю, зокрема в курсах "Електричні і магнітні методи неруйнівного контролю", "Електромагнітні види неруйнівного контролю".

Особистий внесок здобувача полягає в наступному:

- розраховані універсальні функції перетворення, що використовуються для диференціального і абсолютного електромагнітного контролю радіуса та електропровідності циліндричних виробів;

- на основі отриманих функцій створені методики одночасного диференціального контролю параметрів немагнітних виробів різних типів;

- розроблені схеми включення двохпараметрових ТЕМП, ПЕМП і КЕМП, що працюють в диференціальному варіанті;

- отримані співвідношення, що описують роботу диференціальних ТЕМП, ПЕМП і КЕМП;

- оцінено апаратурні і методичні похибки, викликані точністними характеристиками вимірювальних приладів і лінійними наближеннями співвідношень, що описують роботу диференціальних перетворювачів;

- отримані результати експериментів на конкретних немагнітних зразках за допомогою ТЕМП, ПЕМП і КЕМП.

Апробація дисертації.

Основні результати роботи доповідалися на:

- Международной научно-технической конференции "Современные приборы, материалы и технологии для технической диагностики и неразрушающего контроля промышленного оборудования", Харьков, 1998 г.

- ІІ Міжнародній науково-технічній конференції “Метрологія та вимірювальна техніка”, Харків, 1999 р.

Публікації: основні результати дисертації опубліковані в 8 наукових працях, у тому числі 4 статті в наукових журналах, 2 статті в збірнику наукових праць та 2 матеріала міжнародних науково-технічних конференцій.

Структура дисертації. Дисертаційна робота складається зі вступу, чотирьох розділів, заключення, списку використаних джерел та додатків. Повний обсяг дисертації складає 227 сторінок: 38 ілюстрацій на 38 стор., 9 таблиць на 7 стор., додаток на 32 стор., список літератури містить 124 найменування на 12 стор.

ОСНОВНИЙ ЗМІСТ РОБОТИ

У вступній частині зазначена актуальність теми дослідження, відмічено зв’язок роботи з науковими темами, вказана мета дисертаційної роботи та сформульовані основні задачі дисертації, показана наукова новизна та її практичне значення, розглянуто особистий внесок автора у друкованих працях із співавторами, наведена апробація роботи та структура дисертації.

У першому розділі проаналізовано відомі методи та пристрої для одночасного визначення електромагнітних і геометричних параметрів немагнітних виробів у магнітних полях різної орієнтації. Наведена порівняльна характеристика існуючих видів неруйнівного контролю і зроблений висновок про найбільшу придатність для цієї мети має вихорострумовий контроль. Розглянуто методи і засоби електромагнітного (вихорострумового) контролю фізичних величин (міцності, твердості, механічних напружень). Відмічена перевага багатопараметрового контролю виробів, бо він надає можливість одержати більш повну інформацію про об'єкт контролю та підвищити точність отриманих результатів. Встановлено, що на даний час поряд з абсолютними методами ще недостатньо використовуються диференціальні методи. Цей фактор надав поштовх для подальшої розробки таких методів і засобів, які саме і розглянуті у дисертації.

У другому розділі розглянуто електромагнітний метод і реалізуючі його установки з прохідним трансформаторним електромагнітним перетворювачем ТЕМП для безконтактного контролю радіусу а та питомої електричної провідності s циліндричних немагнітних виробів і зразків. Цей перетворювач використовується тоді, коли виріб має доступ до своїх кінців.

На рис. 1 показаний прохідний трансформаторний перетворювач з провідним циліндричним виробом. Всередині перетворювача існують змінні магнітні потоки Ф1, Ф2 і Фвн, тобто потік у повітряному зазорі, у виробі і внесений магнітний потік. На основі рішення рівнянь Максвелла у випадку проникнення електромагнітного поля у провідне середовище з урахуванням граничних умов були отримані вирази для розрахунків потоків Ф0, Ф2 і Фвн. Після цього був введений комплексний параметр N, який характеризує питому нормовану внесену ЕРС

ТЕМП, амплітуда і фаза якого має вигляд:

; (1)

(2)

де

, Евн і Е0 – внесена ЕРС і ЕРС без виробу всередині ТЕМП; h - коефіціент заповнення

, (3)

ап – радіус вимірювальної обмотки ТЕМП;

і
- дійсна та уявна частини параметра
, який характеризує нормований магнітний поток у виробі.

; (4)

, (5)

ber0-, bei0-, ber1- и bei1 – функції Кельвіна нульового та першого порядків від узагальненого параметра х.

Як бачимо з (1) – (5), амплітуда і фаза параметра

залежать тільки від величини х, причому для немагнітного виробу

, (6)

m0 – магнітна константа, f – частота змінного магнітного поля. Залежність N і jвн від х наведена в таблиці, при 1£x£3 (достатня крутизна функцій N і jвн).

x N Nx |jвн|, град
1 2 3 4
1.00 0.123196 0.123196 -80.5473
1.10 0.148086 0.179184 -78.6152
1.20 0.174737 0.251621 -76.5322
1.30 0.202881 0.342869 -74.3135
1.40 0.232207 0.455126 -71.9767
1.50 0.262366 0.590323 -69.5423
1.60 0.292980 0.750029 -67.0331
1.70 0.323663 0.935387 -64.4733
1.80 0.354035 1.147075 -61.8878
1.90 0.383741 1.385307 -59.3017
1 2 3 4
2.00 0.412468 1.649872 -56.7384
2.10 0.439954 1.940199 -54.2199
2.20 0.466001 2.255445 -51.7652
2.30 0.490471 2.594594 -49.3904
2.40 0.513289 2.956546 -47.1084
2.50 0.534432 3.340200 -44.9286
2.60 0.553923 3.744521 -42.8575
2.70 0.571822 4.168582 -40.8987
2.80 0.588214 4.611597 -39.0532
2.90 0.603202 5.072928 -37.3203
3.00 0.616899 5.552088 -35.6974

Оскільки визначення співвідношень, які описують диференційні вихорострумові методи пов'язано з виразами, котрі характеризують абсолютні електромагнітні методи, тому спочатку наведемо алгоритм і формули для знаходження а і s абсолютним методом. За виміряним значенням фазового кута jвн знаходять, використовуючи jвн=f(х), узагальнений параметр х, за яким визначають параметр N за функцієй N=f(x). Виміряв значення Евн і знаючи ЕРС Е0, визначають а і s виробу за формулами:


(7)

(8)

За допомогою методики розрахунку похибок непрямих вимірювань і використавши формули (6) – (8) і результати таблиці були знайдені вирази для оцінки відносних похибок gа і gs, за якими побудовані залежності gа і gs від х (див. рис. 2). Аналіз цих характеристик показує, що ці похибки визначаються положенням робочої точки (тобто значенням х0) и похибками вимірювальних пристроїв. Тому вони є універсальними і можуть використовуватися для визначення апаратурних похибок вимірювання двох параметрів виробів. Змінюючи частоту магнітного поля, можно задавати раціональні режими роботи перетворювача для досягнення малих gа і gs. На рис. 2 видно, що такі режими забезпечуються при х³3.

Модифікація абсолютного метода з відбудовою одного параметра від іншого відрізняється тим, що для окремого визначення s вводиться інший комплексний параметр Nx, причому