Смекни!
smekni.com

Расчёт и проектирование замкнутой системы воздушно-динамического рулевого привода летательного (стр. 4 из 10)


Значение

выбирается из условия обеспечения фазовой частотной характеристики разомкнутого контура, близкой к заданному номинальному значению при возникновении ограничений выходной координаты силовой части привода. При таком значении σ обеспечиваются меньшие фазовые сдвиги, чем при расчёте σ по минимуму расхода, но расход рабочего тела через систему увеличивается, что в случае применения воздушно-динамического привода не является ограничением для проектирования.

Максимальный развиваемый момент определяется по зависимости:

Значение произведения площади поршня на плечо кинематической передачи определяется по зависимости:

где

Потребная скорость для обеспечения отработки гармонического сигнала рассчитывается по формуле:

где

Рис. 1.10 График зависимости числа υ от величины избыточного давления

Структура и параметры автоколебательной системы воздушно-динамического привода определяются для режима наихудших фазовых сдвигов, соответствующего максимуму энергетической функции при нагрузке, имеющей характер перекомпенсации, то есть режима

(рис. 1.11). Для указанного режима значения параметров следующие:

- число маха М ……………………………………………………..0.894;

- момент шарнирной нагрузки

………………………..0.265;

- избыточное давление

………………………………0.667×105;

- частота вращения по крену

……………………………….7.8±2.

Рис. 1.11 Энергетическая функция привода

Рассчитаем структуру и параметры автоколебательной системы ВДРП на соответствующего режима:

а) рассчитывается допустимая минимальная частота автоколебаний из условия обеспечения разноса рабочей частоты ω0 и частоты автоколебаний ωа:

, где


б) рассчитывается фазовый сдвиг φn и амплитудная характеристика An исполнительного двигателя на рабочей частоте и частоте автоколебаний.

Рис. 1.12 Структурная схема исполнительного двигателя РП

Рассчитаем максимальную скорость на этом режиме, исходя из Ωm на предыдущем:

,

где

.

.

Тогда новое Ωm примет значение:

,

где

.

Из рис. 1.13 определим фазовые сдвиги и величины амплитудной характеристики исполнительного двигателя РП на рабочей частоте и частоте автоколебаний.

Для данного режима определены соответствующие значения:

в) определяется время эквивалентного запаздывания управляющего электромагнита:

где

– фазовый сдвиг нелинейного элемента на частоте
,

;

– фазовый сдвиг корректирующего фильтра на частоте автоколебаний, выбираемый при первой итерации равным нулю.

Рис. 1.13 Амплитудно-фазовая частотная характеристика исполнительного двигателя рулевого привода

г) рассчитываются фазовые характеристики разомкнутой и замкнутой автоколебательной системы воздушно-динамического привода.

Фазовая характеристика разомкнутой системы рассчитывается по следующей формуле:

где

– фазовый сдвиг исполнительного двигателя РП,

– фазовая характеристика управляющего электромагнита (рис. 1.15),

– фазовый сдвиг корректирующего фильтра (рис. 1.14),

– фазовый сдвиг нелинейного элемента,
.

Фазовая характеристика замкнутой системы:

,

– амплитудная характеристика разомкнутой системы.

где

При

необходим фильтр с ослаблением амплитудной характеристики на частоте автоколебаний:

где


Рис. 1.14 Амплитудно-фазовая частотная характеристика корректирующего фильтра

Рис. 1.15 Фазовая характеристика управляющего электромагнита

Фазовая характеристика разомкнутой системы воздушно динамического рулевого привода представлена на рис. 16, замкнутой – на рис. 1.17.

Рис. 1.16 Фазовая характеристика разомкнутой системы ВДРП