3) эластичностью и быстрым исчезновением деформаций, возникающих под воздействием внешних сил;
4) минимальными пластическими (остаточными) деформациями после снятия нагрузки;
5) максимальной устойчивостью к многократным и знакопеременным нагрузкам. Поэтому для производства химических волокон в качестве сырья используют лишь волокнообразующие полимеры, которые состоят из гибких макромолекул линейной или слаборазветвленной формы, обладающих большой молекулярной когезией. Молекулярная масса этих полимеров должна быть более 15 000, а молекулярно-массовое распределение достаточно узким. Кроме того, эти полимеры должны плавиться без разложения, растворяться в доступных растворителях или переводиться в вязкотекучее состояние какими-либо другими способами.
Таблица 1. Сравнительная характеристика физико-механических свойств химических и натуральных волокон
Волокна | Плотность, кг/м3 | Равновесная влажность,% | Относительная разрывная нагрузка, МПа | Относительное удлинение при разрыве,% | Устойчивость к многократным изгибам, число циклов | Устойчивость истиранию (при нагрузке 3кПа) | Тпл, ºС |
Капрон | |||||||
Обычная нить | 1140 | 3.5-3,9 | 46-51 | 20-32 | 25000-28000 | 1500-2170 | 196-216 |
Прочная нить | 1140 | 69-85.5 | 15-16 | 16000-30000 | 1400-2230 | 196-216 | |
Найлон | |||||||
Обычная нить | 1140 | 3,3-3,8 | 39-46 | 23-32 | 11000-14000 | 1000-1040 | 235-255 |
Прочная нить | 1140 | 74-79 | 14-16 | 27700-34000 | 3600-4100 | 235-255 | |
Лавсан | |||||||
Обычная нить | 1380 | 0.4-0,5 | 48-62 | 15-20 | 9000-12000 | 1250-1360 | 235-255 |
Упрочненная нить | 1380 | 0,4-0,5 | 69-83 | 9-12 | 7200-14000 | 450-680 | 235-255 |
Волокно | 1380 | 41-55 | 25-40 | 21000-30000 | - | 235-255 | |
Хлопок | 1520 | 7,5-9.0 | 40-60 | 7-8 | - | - | - |
Шерсть | 1320 | 13-15 | 15-20 | 30-40 | - | - | - |
Шелк натуральный | 1320 | 11 | 33-42 | 20-25 | - | - | - |
Процесс получения капроновых нитей и волокон хорошо изучен и непрерывно развивается. Ассортимент нитей, рассчитанный на удовлетворение потребностей различных отраслей народного хозяйства, включает нити текстильного и технологического назначения.
Существует три способа производства капроновых нитей и волокон:
1) Периодический способ - периодический или непрерывный синтез полимера, периодические процессы экстракции и сушки крошки (гранул), формование комплексных нитей.
2) Непрерывный способ с получением крошки - непрерывный синтез полимера, экстракция и сушка крошки, формование комплексных нитей.
Непрерывный способ с формованием комплексных нитей непосредственно из расплава (непрерывный синтез полимера и формование комплексных нитей непосредственно из расплава).
Первые два способа производства капроновых нитей состоят из одинаковых, технологических стадий, но второй способ выгодно отличается от первого применением непрерывных процессов синтеза полимера, экстракции и сушки крошки, что значительно улучшает технологию производства и повышает качество полимера и нитей.
Третий способ предусматривает совмещение в едином технологическом процессе непрерывного способа получения полимера с формованием нитей из расплава без повторного плавления полимера, при этом коренным образом изменяется технология получения нитей. Непрерывный процесс осуществлен в полном объеме при получении волокон и находит все большее применение в производстве текстильных нитей.
Капролактам может быть синтезирован из фенола, бензола, анилина, а также из н-бутана, фурфурола, ацетилена, этиленоксида и дивинила.
Рассмотрим пример получения капролактама из фенола:
Получение капролактама из фенола.
При гидрировании фенола (135-160°С) в присутствии никелевого катализатора образуется циклогексанол:
Дегидрированием циклогексанола получают кетон-циклогексанон:
Реакция дегидрирования протекает при атмосферном давлении и температуре 400-450°С в присутствии железо−цинкового катализатора. При взаимодействии циклогексанона с гидроксиламином образуется оксим циклогексанона (циклогексаноксим). Этот процесс называется оксимированием:
Оксимирование проводится при 20°С. В конце процесса при нейтрализации выделяющейся серной кислоты аммиаком температура реакционной массы самопроизвольно повышается до 90°С.
При действии концентрированной серной кислоты оксим циклогексанона изомеризуется в лактам ε−аминокапроновой кислоты (изоксим циклогексанона) происходит перегруппировка атомов в молекуле циклогексаноноксима:
Полученный таким способом капролактам подвергается очистке от примесей экстракцией органическими растворителями (например, трихлорэтиленом) и многократной дистилляции под вакуумом.
Из 1 кг фенола получают 0,65 кг капролактама.
Качество капролактама, применяемого для производства волокна капрон, характеризуется следующими основными показателями:
Внешний вид Белые кристаллы
Молекулярная масса 113,16
Температура, ºС
кристаллизации 68,8-69,0
кипения 262
Перманганатное число
3% -ного водного раствора, с 5000-10000
Содержание летучих оснований
мэкв */кг 0,0-0,6
Окраска 50% -ного водного раствора,
ед. платиновокобальтовой шкалы,
не более 5,0
Содержание,%, не более
Циклогексаноноксима 0,002
Железа 0,00002
Кислотность мэкв/кг, не более 0,2
Щелочность мэкв/кг, не более 0,05
Капролактам поступает на заводы синтетического волокна в полиэтиленовых мешках или в бумажных мешках, помещенных в мешки из прорезиненной ткани. Он транспортируется также в расплавленном состоянии в специальных цистернах, покрытых термоизоляцией и снабженных змеевиком для парового обогрева. При транспортировании расплава капролактама достигается значительный экономический эффект, так как отпадает операция плавления капролактама на заводе - потребителе и исключается загрязнение продукта. Расплавленный лактам может храниться в обогреваемых и изолированных емкостях.
Процесс полимеризации капролактама - превращение циклов в линейные полимеры - называется полиамидированием. Он протекает только при сравнительно высокой температуре и повышенном, нормальном или пониженном давлении в присутствии активатора.
Активаторами могут служить органические или минеральные кислоты, а также вода, соль АГ, аминокапроновая кислота или другие соединения, которые в условиях процесса полиамидирования капролактама способны претерпевать химические превращения с выделением воды.
Кроме перечисленных соединений очень эффективными активаторами являются щелочи и металлический натрий, которые в десятки и сотни, раз сокращают продолжительность реакции полиамидирования. В производственных условиях в качестве активатора процесса полиамидирования капролактама чаще всего применяется вода.
Механизм реакции образования поликапроамида зависит от характера применяемого активатора. В присутствии воды реакция полиамидирования капролактама протекает ступенчато по следующей схеме:
На начальной стадии процесса при взаимодействии капролактама с водой образуется аминокапроновая кислота:
Аминокапроновая кислота соединяется с молекулой капролактама и образуется димер:
Димер взаимодействует еще с одной молекулой капролактама и образуется тример:
Присоединение молекул капролактама происходит до образования поликапроамида:
Реакция полиамидирования капролактама является равновесной и обратимой:
В связи с этим капролактам не полностью превращается в поликапроамид и в полимере всегда содержится некоторое количество мономера и других низкомолекулярных водорастворимых соединений (димера, тримера и капролактама).
Количество и состав низкомолекулярной фракции, содержащейся в поликапроамиде (рис.1), зависит от температурных условий проведения процесса. Например, при 180°С количество низкомолекулярных фракций, состоящих из димера и тримера, достигает 2-3%, а при 250-270°С - уже 10-12%, причем примерно 2/3 составляет мономер и 1/3 - димеры и тримеры капролактама. Низкомолекулярные водорастворимые соединения могут быть удалены из поликапрамида экстракцией горячей водой или отгонкой под вакуумом из расплавленного полимера.
График 1 - Зависимость содержания низкомолекулярных соединений в поликапроамиде от температуры полиамидирования капролактама.
К поликапроамиду, предназначенному для переработки в волокно капрон, предъявляются определенные требования. В частности, он должен иметь достаточно большую молекулярную массу (не ниже 11000) и быть монолитным, т.е. не содержать большого числа пустот и раковин. Кроме того, в полимере не должно быть продуктов окисления (поликапроамид белого цвета).
Важным показателем способности поликапроамида к волокнообразованию является молекулярная масса или степень полиамидирования.