ВВЕДЕНИЕ
Гадолиниево-галлиевые гранаты (ГГГ) формулы Gd3Ga60]2 используются впроизводстве компонентов запоминающих устройств. В ходе обработки около 80 % исходного материала превращается в отходы или отбраковывается. ГГГ имеют высокую стоимость и их выделение из отходов представляет интерес с экономической точки зрения.
Глава 1. ГАДОЛИНИЙ И ЕГО СВОЙСТВА
Гадолиний металлический. Физические и химические свойства.
Гадолиний — светло-серый металл. Плотность 7,895 кг/дм3. Температура плавления 1312°C, температура кипения 3280°C. Ферромагнетик, точка Кюри 292 К.
Гадолинию свойственно наивысшее среди всех элементов сечение захвата тепловых нейтронов: 46 000 барн — такова эта величина для природной смеси изотопов гадолиния.
Гадолиний медленно окисляется на воздухе при комнатной температуре, быстро — выше 100°C.
При длительном хранении на открытом воздухе он постепенно тускнеет, покрываясь оксидной пленкой. При нагревании металлический гадолиний реагирует с галогенами, азотом, водородом. Взаимодействует с минеральными кислотами, кроме плавиковой, не взаимодействует с растворами щелочей
Производство. Содержание гадолиния в земной коре 5,4*10-4% по массе, в морской воде 6*10-7 мг/л. Вместе с другими редкоземельными элементами находится в минералах гадолините, монаците, бастнезите, ксенотиме, апатите.
Монацитовые и бастнезитовые руды обычно вскрывают нагреванием с серной кислотой.
При этом образуются сульфаты редкоземельных элементов, которые выщелачиваются из продукта реакции водой.
Редкоземельные элементы извлекают из раствора осаждением в виде оксалатов или двойных сульфатов редкоземельных элементов и натрия, а уже затем эти соединения превращают в нужную техническую соль.
Универсальный способ получения совершенно чистых редкоземельных металлов заключается в восстановлении безводных фторидов кальцием. Безводные фториды редкоземельных металлов получают либо фторированием окислов безводным фтористым водородом при 575°С, либо прокаливанием фторидов, осажденных из водных растворов плавиковой кислотой, либо же сплавлением окислов редкоземельных металлов с бифторидом аммония.
Безводный фторид смешивают с порошком металлического кальция, Танталовый тигель с загрузкой нагревают в атмосфере аргона, пока не начнется реакция. По завершении реакции и редкоземельный металл, и шлак (фторид кальция) должны находиться в расплавленном состоянии.
Полученный таким способом Гадолиний кальциетермический по содержанию контролируемых примесей должен удовлетворять требованиям и нормам ТУ 48-4-210-72
Марка | ГдМ-1 | ГдМ-2 | ГдМ-3 |
Содержание суммы других редкоземельных металлов (европия, самария, тербия. Иттрия), % не более | 0,1 | 0,8 | 1,3 |
Содержание других контролируемых примесей, % не более | |||
Железа | 0,01 | 0,03 | 0,04 |
Кальция | 0,01 | 0,03 | 0,05 |
Меди | 0.01 | 0,1 | 0,1 |
Тантала, молибдена или ниобия | 0.02 | 0,2 | 0,3 |
Применение. Магнитные носители информации
Ряд сплавов гадолиния и особенно сплав с кобальтом и железом позволяет создавать носители информации с колоссальной плотностью записи. Это обусловлено тем, что в этих сплавах образуются особые структуры — ЦДМ — цилиндрические магнитные домены, причём размеры доменов менее 1 мкм, что позволяет создавать носители памяти для современной компьютерной техники с плотностью записи 1-9 миллиардов бит на 1 квадратный сантиметр площади носителя.
Ядерная энергетика
В атомной технике гадолиний нашел применение для защиты от тепловых нейтронов, так как этот элемент обладает наивысшей способностью к захвату нейтронов из всех элементов. Его сечение равно 49000 барн. Но из всех изотопов гадолиния наивысшей способностью к захвату нейтронов обладает его изотоп гадолиний-157, сечение захвата 254000 барн.
Сплав гадолиния и никеля применяется для изготовления контейнеров для захоронения радиоактивных отходов.
Гигантский магнетокалорический эффект
Сплав гадолиния, германия, кремния и небольшого количества железа (1 %) применяется для производства магнитных холодильников (на основе гигантского магнетокалорического эффекта).
Чистый гадолиний имеет максимальное значение магнетокалорического эффекта в точке Кюри (~290 K) порядка 4 К при адиабатическом намагничивании полем 18кЭ (по данным кафедры магнетизма ТвГУ).
Так же особый интерес в последние годы привлекает к себе сплав гадолиний-тербий (монокристаллический) для производства магнитных холодильников.
Легирование титановых сплавов
Некоторое количество гадолиния постоянно расходуется для производства специальных титановых сплавов (повышает предел прочности и текучести при легировании уже около 5% гадолиния).
Гадолиний-148, испытывающий альфа-распад (полураспад 93 года), является безопасным и в тоже время исключительно мощным источником тепла для радиоизотопных термоэлектрогенераторов.
Гадолиний-153 используется в качестве источника излучения в медицине, например, для диагностики остеопороза.
Рентгеноконтрастный препарат гадодиамид, содержащий гадолиний, используется преимущественно для внутривенного контрастирования при МРТ-исследованиях.
Сплавы
Сплав гадолиния с церием и рутением в области сверхнизких температур приобретает сверхпроводимость и в то же время обнаруживает слабый ферромагнетизм, что находит свое применение в научных исследованиях.
Сплав гадолиния с титаном (он впервые был получен в нашей стране) применяют в качестве активатора в стартерах люминесцентных ламп.
Сплав гадолиний-железо применяется как очень емкий аккумулятор водорода, и может быть применен для водородного автомобиля.
Постоянные магниты
Гадолиний используется в небольших количествах при производстве постоянных магнитов на основе сплава Самарий-Кобальт, а так же Неодим-Железо-Бор.
Оксид гадолиния (Gd2O3). Физические и химические свойства
Оксид (сесквиоксид) гадолиния Gd2O3 – представляет собой белые кристаллы не растворимые в воде. Плотность 7,618 г/см3. Получают, как правило разложением Gd2(C2O4)3, Gd(NO3)3 или других соединений на воздухе, обычно при 800-1000 °С.
Окись гадолиния поглощает углекислоту из воздуха, а при нагревании в воде темнеет, но восстановления не обнаруживает; она гигроскопична и хорошо растворяется в кислотах. При действии аммиака из растворов солей садится желатинообразный гидрат гадолиния. Оксид Gd2О3 обладает основными свойствами, ему отвечает основание Gd(ОН)3.
Производство
Оксид гадолиния получают в процессе производства металлического гадолиния, как было описано выше. Окись гадолиния по содержанию контролируемых примесей должна удовлетворять требованиям и нормам ТУ 48-4-20-72
Применение. Оксид гадолиния применяется для выращивания монокристаллов гадолиний-галлиевого граната (ГГГ) и гадолиний-скандий-галлиевого граната (ГСГГ). ГГГ - является материалом подложек для наращивания эпитаксиальных пленок железных гранатов, используемых в магнитных запоминающих устройствах, а так же ювелирный поделочный камень.
На основе ГСГГ изготавливают лазерные системы с предельно высоким КПД и сверхвысокими параметрами лазерного излучения. В принципе ГСГГ на сегодняшний день является первым в достаточной степени изученным и имеющим отработанную технологию производства лазерным материалом — обладающим высоким КПД преобразования и пригодным для создания лазерных систем для инерциального термоядерного синтеза.
Оксид гадолиния используется для варки специального стекла, поглощающего тепловые нейтроны. Самый распространенный состав такого стекла: оксид бора-33 %,оксид кадмия-35 %, оксид гадолиния-32 %.
Оксиды гадолиния, самария и европия входят в состав защитных керамических покрытий и красок, используемых для защиты от тепловых нейтронов в ядерных реакторах. В ряде ТВЭЛ используется таблетки содержащий оксид гадолиния.
Окись гадолиния Gd2O3 используют как один из компонентов железо-иттриевых ферритов.
Другие соединения гадолиния и их применение
Гексаборид гадолиния применяется для изготовления катодов мощных электронных пушек и рентгеновских установок, ввиду самой маленькой работы выхода из всех боридов редких земель, и его работа в 2,05 эВ сравнима с работой выхода щелочных металлов (калий, рубидий, цезий).
Использование ионов гадолиния для возбуждения лазерного излучения позволяет создать лазер, работающий в ближнем ультрафиолетовом диапазоне с длиной волны 0,31 мк.
Хлорид гадолиния применяется для блокады клеток Купфера при лечении печени.
Теллурид гадолиния может работать в мощном потоке нейтронов как очень хороший термоэлектрический материал (термо-э.д.с 220—250 мкВ/К). Селенид гадолиния имеет отличные термоэлектрические свойства и весьма перспективный и применяемый материал в производстве радиоизотопных источников энергии.
Для регулирования атомного реактора применяется так же борат гадолиния. Растворимые соединения гадолиния могут быть использованы для стабилизации растворов, получаемых при переработке ТВЭЛов растворением в кислотах для последующего разделения.
Стабилизирующее действие солей гадолиния проявляется в способности «глушить» ядерные реакции в таких растворах, и позволяет осуществлять ряд технологических операций, связанных с концентрированием таких растворов, а значит с уменьшением критического объема и образованием критических масс.
В небольшом объеме некоторые соединения гадолиния применяются для получения сверхнизких температур в научных исследованиях. Так, например, сульфат гадолиния при размагничивании вблизи абсолютного нуля температур позволяет снизить температуру до 0,0001 К. Наряду с сульфатом гадолиния для получения сверхнизких температур используют так же и хлорид гадолиния.