Рисунок 4.3- Дроссельный каскад
Расчет рабочей точки производится по тем же выражениям, что и для предыдущего каскада (4.6, 4.7), но выходной ток каскада будет равен току нагрузки:
Тогда рабочая точка будет иметь следующие координаты:
Так как дроссель по постоянному току является короткозамкнутым проводником, то напряжение питания будет равным падению напряжения на транзисторе, то есть Еп=Uкэо=10.71В.
Нагрузочная прямая по переменному току описывается выражением:
Для упрощения здесь
Вид нагрузочных прямых изображен на рисунке (4.4).
Рисунок 4.4- Нагрузочные прямые для дроссельного каскада
Потребляемая мощность каскадом и рассеиваемая на транзисторе аналогично определяется по выражениям (4.11, 4.12). В результате
Видно, что мощность рассеивания равна потребляемой.
Сравнивая энергетические характеристики двух каскадов, можно сделать вывод, что лучше взять дроссельный каскад, так как он имеет наименьшее потребление, напряжение питания и ток.
4.2 Выбор транзистора оконечного каскада
Выбор транзистора осуществляется по следующим предельным параметрам:
- предельный допустимый ток коллектора
- предельно допустимое напряжение коллектор-эмиттер
- предельная мощность, рассеиваемая на коллекторе
- граничная частота усиления транзистора по току в схеме с ОЭ
Этим требованиям удовлетворяет транзистор КТ939А [3]. Основные технические характеристики этого транзистора приводятся ниже.
Электрические параметры:
-граничная частота коэффициента передачи тока в схеме с ОЭ
-постоянная времени цепи обратной связи при
-индуктивность базового вывода
-индуктивность эмиттерного вывода
-статический коэффициент передачи тока в схеме с ОЭ
-емкость коллекторного перехода при
Предельные эксплуатационные данные:
-постоянное напряжение коллектор-эмиттер
-постоянный ток коллектора
-постоянная рассеиваемая мощность коллектора при Тк=298К
-температура перехода
4.3 Расчет эквивалентной схемы транзистора
Так как рабочие частоты усилителя больше частоты
Рисунок 4.6 – Схема Джиаколетто
Параметры эквивалентной схемы не даны в справочнике, но они совпадают с параметрами схемы транзистора, предложенной Джиаколетто [1,4] (рис.4.6).
Входная индуктивность:
Входное сопротивление:
где
Крутизна транзистора:
где
Выходное сопротивление:
Выходная ёмкость:
Тогда в соответствие с этими формулами получаются следующие значения элементов эквивалентной схемы:
4.4 Расчет цепей термостабилизации
Существует несколько видов схем термостабилизации[5,6]. Использование этих схем зависит от мощности каскада и требований к термостабильности. В данной работе рассмотрены следующие схемы термостабилизации: эмиттерная, пассивная коллекторная, активная коллекторная.
4.4.1 Эмиттерная термостабилизация
Рассмотрим эмиттерную термостабилизацию, схема которой приведена на рисунке (4.7). Метод расчёта и анализа эмиттерной термостабилизации подробно описан в [5,6].
Рисунок 4.7 – Схема эмиттерной термостабилизации
При расчёте элементов схемы выбирается падение напряжения Uэ на сопротивлении Rэ (в интервале 2-5В), расчитываются ток делителя
Выбрано напряжение Uэ=3В.
Ток базового делителя находится по выражению:
где
Сопротивления
Напряжение питания
Рассеиваемая мощность на Rэ: