Выберем в качестве прототипа передаточной характеристики каскада дробно-рациональную функцию вида:
Найдём такие её коэффициенты, которые позволят из системы нелинейных
рассчитать нормированные значения элементов КЦ, обеспечивающие максимальный коэффициент усиления при заданном допустимом уклонении АЧХ от требуемой формы. С целью нахождения требуемых значений коэффициентов
где
Для решения задачи нахождения векторов коэффициентов
где
Первое неравенство в (4) определяет величину допустимого уклонения АЧХ каскада от требуемой формы. Второе и третье неравенства определяют условия физической реализуемости рассчитываемой КЦ. Учитывая, что полиномы
В результате получим систему однородных линейных неравенств, являющуюся задачей линейного программирования. Для обеспечения максимального коэффициента усиления рассчитываемого каскада, неравенства (5) следует решать при условии максимизации функции цели:
Далее, из решения системы нелинейных уравнений (3), находятся нормированные значения элементов КЦ, обеспечивающие максимальный коэффициент усиления каскада при заданном допустимом уклонении АЧХ от требуемой формы.
Многократное решение системы линейных неравенств (5), для различных
В качестве примера осуществим синтез таблиц нормированных значений элементов одной из наиболее простых и эффективных КЦ применяемых в полосовых усилителях мощности, схема которой приведена на рис.1.
Рис. 8.1.
Аппроксимируя входной и выходной импедансы транзисторов V1 и V2 RC- и RL-цепями, от схемы приведённой на рис. 1 перейдём к схеме приведённой на рис.2.
Рис. 8.2.
Вводя идеальный трансформатор после конденсатора С2, с последующим применением преобразования Нортона, перейдём к схеме представленной на рис.3.
Рис. 8.3.
Коэффициент прямой передачи последовательного соединения КЦ и транзистора V2, c учётом преобразования КЦ (рисунок 3), можно описать выражением:
где
По известным значениям
где
Из (6) следует, что коэффициент усиления каскада в полосе пропускания равен:
Соотношения (7) - (9) позволяют рассчитать нормированные значения элементов схемы (рис.1) по известным коэффициентам b1, b2, b3, b4. Для нахождения указанных коэффициентов сформируем квадрат модуля функуции-прототипа передаточной характеристики рассматриваемой цепи:
Коэффициенты
Для нахождения коэффициентов