К неполярным электроизоляционным материалам относятся полиэтилен, политетрафторэтилен, полистирол, парафин и др. Слабополярным является нефтяное (минеральное) масло.
Полярными считаются такие материалы, молекулы которых и без воздействия внешнего электрического поля имеют электрический момент (собственный, или постоянный, дипольный момент). Это молекулы, в которых отдельные атомы связаны полярными связями со взаимно нескомпенсированными дипольными моментами связей.
К полярным материалам относятся целлюлоза, поливинилхлорид, хлорированные дифенилы и др.
Поляризованность диэлектрика равна индуцированному диполь-моменту единицы объема диэлектрика, т. е является суммой элементарных дипольных моментов в единице объёма Способность диэлектрика к поляризации можно охарактеризовать тремя величинами – поляризуемостью, диэлектрической восприимчивостью и относительной диэлектрической проницаемостью. В технике чаще всего используется относительная диэлектрическая проницаемость.
Поляризуемость связана с поляризованностью диэлектрика
P=NαE, (7.3)
где Р – поляризованность; N – концентрация индуцированных диполей; α – поляризуемость; Е – напряженность постоянного электрического поля.
Относительная диэлектрическая проницаемость и диэлектрическая восприимчивость диэлектрика связаны с поляризованностью
где
Из сравнения выражений (7.3) и (7.4) следует соотношение между относительной диэлектрической проницаемостью, относительной диэлектрической восприимчивостью и поляризуемостью диэлектрика
8 Сверхпроводники и возможности их применения
в электротехнике (вопрос 20)
Основные явления. Скачкообразное исчезновение сопротивления ртути при понижении температуры впервые наблюдал голландский
физик X. Камерлинг-Оннес (1911) (рисунок 8.1). Он пришёл к выводу, что ртуть при Т = 4,15 К переходит в новое состояние, которое было названо сверхпроводящим. Несколько позднее Камерлинг-Оннес обнаружил, что электрическое сопротивление ртути восстанавливается при Т < ТК в достаточно сильном магнитном поле.
Падение сопротивления до нуля происходит на протяжении очень узкого интервала температур, ширина которого для чистых образцов составляет 10-3–10-4 К и возрастает при наличии примесей и других дефектов структуры[2, С.266].
Отсутствие сопротивления в сверхпроводящем состоянии с наибольшей убедительностью демонстрируется опытами, в которых в сверхпроводящем кольце возбуждается ток, практически не затухающий. В одном из вариантов опыта используются два кольца из сверхпроводящего металла. Большее из колец неподвижно закрепляется, а меньшее концентрически подвешивается на упругой нити таким образом, что когда нить не закручена, плоскости колец образуют между собой некоторый угол. Кольца охлаждаются в присутствии магнитного поля ниже температуры ТК, после чего поле выключается. При этом в кольцах возбуждаются токи, взаимодействие между которыми стремится уменьшить первоначальный угол между плоскостями колец. Нить закручивается, а наблюдаемое постоянство угла закручивания показывает, что токи в кольцах являются незатухающими. Опыты такого рода позволили установить, что сопротивление металла в сверхпроводящем состоянии меньше, чем 10-20 Ом·см (сопротивление чистых образцов Си или Ag составляет около 10-9 Ом∙см при температуре жидкого гелия). Однако сверхпроводник не является просто идеальным проводником, и позднее установили, что слабое магнитное поле не проникает в глубь сверхпроводника независимо от того, было ли поле включено до или после перехода металла в сверхпроводящее состояние. В отличие от этого, идеальный проводник (т. е. проводник с исчезающе малым сопротивлением) должен захватывать пронизывающий его магнитный поток (рисунок 8.2, а, б, в) [2, С.67].
Выталкивание магнитного поля из сверхпроводящего образца (эффект Мейснера) означает, что в присутствии внешнего магнитного поля такой образец ведёт себя как идеальный диамагнетик той же формы с магнитной восприимчивостью η=1/4π. В частности, если образец имеет форму длинного сплошного цилиндра, а внешнее поле Н однородно и параллельно оси цилиндра, то магнитный момент, отнесённый к единице объёма, М = –Н/4π. Это примерно в 106 раз больше по абсолютной величине, чем для металла в нормальном состоянии. Эффект Мейснера связан с тем, что при Н < НК в поверхностном слое (толщиной 10-5–10-6 см) сверхпроводящего цилиндра появляется круговой незатухающий ток, сила которого как раз такова, что магнитное поле этого тока компенсирует внешнее поле в толще сверхпроводника.
Размер энергетической щели зависит от температуры, достигая максимального значения при абсолютном нуле и полностью исчезая при Т = Тсв. Теория БКШ дает следующую связь ширины щели с критической температурой перехода