Смекни!
smekni.com

Технология конструкционных электротехнических материалов (стр. 12 из 14)

Вещество Критическая температура ТК, К Критическое поле Н0
Сверхпроводники 1-го рода

Свинец

7,2 800
Тантал 4,5 830
Олово 3,7 310
Алюминий 1,2 100
Цинк 0,88 53
Вольфрам 0,01 1.0
Ниобий 9,25 4000
Сплав НТ-50
(Ni-Ti-Zr) 9,7 100000
Сплав Ni-Ti 9,8 100000
V3Ga 14,5 350000
Nb3Sn 18,0 250000
Сверхпроводники 2-го рода
PbMo4S8 ~ 600000
Nb3Ge 23 ±
GeTe* 0,17 -
SrTiO3 0,2-0,4 130

Все интерметаллические соединения и сплавы относятся к сверхпроводникам II рода. Однако деление веществ по их сверхпроводящим свойствам на два вида не является абсолютным. Любой сверхпроводник I рода можно превратить в сверхпроводник II рода, если создать в нем достаточную концентрацию дефектов кристаллической решетки. Например, у чистого олова Тсв = 3,7 К, но если вызвать в олове резко неоднородную механическую деформацию, то критическая температура возрастет до 9 К, а критическая напряженность магнитного поля увеличится в 70 раз.

Сверхпроводимость никогда не наблюдается в системах, в которых существует ферро- или антиферромагнетизм. Образованию сверхпроводящего состояния в полупроводниках препятствует малая концентрация свободных электронов. Однако в материалах с большой диэлектрической проницаемостью силы кулоновскою отталкивания между электронами в значительной мере ослаблены. Поэтому некоторые из них также проявляют свойства сверхпроводников при низких температурах. Примером может служить титанат стронция (SrTiO3), относящийся к группе сегнетоэлектриков. Ряд полупроводников удается перевести в сверхпроводящее состояние добавкой большой концентрации легирующих примесей (GeTe, SnTe, CuS и др.).

В настоящее время промышленность выпускает широкий ассортимент сверхпроводящих проволок и лент для самых различных целей. Изготовление таких проводников связано с большими технологически

ми трудностями. Они обусловлены плохими механическими свойствами многих сверхпроводников, их низкой теплопроводностью и сложной структурой проводов. Особенно большой хрупкостью отличаются интерметаллические соединения с высокими критическими параметрами. Поэтому вместо простых проволок и лент приходится создавать композиции из двух (обычно сверхпроводник с медью) и даже нескольких металлов. Для получения многожильных проводов из хрупких интерметаллов особенно перспективен бронзовый метод (или метод твердофазной диффузии), освоенный промышленностью. По этому методу прессованием и волочением создается композиция из тонких нитей ниобия в матрице из оловянной бронзы. При нагреве олово Sn из бронзы диффундирует в ниобий Nb, образуя на его поверхности тонкую сверхпроводящую пленку станнида ниобия Nb3Sn. Такой жгут может изгибаться, но пленки остаются целыми [2, С.74]. Применение сверхпроводников в различных областях науки техники. Сверхпроводящие элементы и устройства находят все более широкое применение в самых различных областях науки и техники. Разработаны крупномасштабные долгосрочные программы промышленного использования сильноточной сверхпроводимости.

Одно из главных применений сверхпроводников связано с получением сверхсильных магнитных полей. Сверхпроводящие соленоиды позволяют получать однородные магнитные поля напряженностью свыше 107 А/м в достаточно большой области пространства, в то время как пределом обычных электромагнитов с железными сердечниками являются напряженности порядка 106 А/м. К тому же в сверхпроводящих магнитных системах циркулирует незатухающий ток, поэтому не требуется внешний источник питания. Сильные магнитные поля необходимы при проведении научных исследований. Сверхпроводящие соленоиды позволяют в значительной мере уменьшить габариты и потребление энергии в синхрофазотронах и других ускорителях элементарных частиц. Перспективно использование сверхпроводящих магнитных систем для удержания плазмы в реакторах управляемого термоядерного синтеза, в магнитогидродинамических (МГД) преобразователях тепловой энергии в электрическую, в качестве индуктивных накопителей энергии для покрытия пиковых мощностей в масштабах крупных энергосистем. Широкое развитие получают разработки электрических машин со сверхпроводящими обмотками возбуждения. Применение сверхпроводников позволяет исключить из машин сердечники из электротехнической стали, благодаря чему уменьшаются в 5 – 7 раз их масса и габариты при сохранении мощности. Экономически обосновано создание сверхпроводящих трансформаторов, рассчитанных на высокий уровень мощности (десятки-сотни мегаватт). Значительное внимание в разных странах уделяют разработке сверхпроводящих линий электропередач на постоянном и переменном токах. Разработаны опытные образцы импульсных сверхпроводящих катушек для питания плазменных пушек и систем накачки твердотельных лазеров. В радиотехнике начинают использовать сверхпроводящие объемные резонаторы, обладающие, благодаря ничтожно малому электрическому сопротивлению, очень высокой добротностью

[2, С.75].

9 Векторное изображение электрических величин (тока, напряжения, ЭДС). Примечание комплексных чисел для расчета электрических цепей. Представление синусоидальных э.д.с., напряжений и токов

комплексными числами

При изображении вращающихся векторов синусоидальных э.д.с, напряжения и тока на комплексной плоскости ось абсцисс плоскости декартовых координат совмещают с осью действительных или вещественных величин (ось + 1) комплексной плоскости. Тогда мгновенные значения синусоидальных величин получают на оси мнимых величин (ось+j) [18].

Как известно, каждому вектору на комплексной плоскости соответствует определенное комплексное число, которое может быть записано в показательной, тригонометрической или алгебраической форме. Например, э.д.с. Emsm (cot + ц/с) изображенной на рисунке 9.1 вращающимся вектором, соответствует комплексное число.

Рисунок 9.1 - Изображение синусоидальной э.д.с. вращающимся вектором на комплексной плоскости

Um=Um+jUm, (9.1)

Em ef(ωt+ψe)= Em cos(ωt+ψe)+jEmsi n+(ωt+ψe)= е'+je (9.2)

Фазовый уголь a>t+ у/, определяют по проекциям вектора на оси координат +1

tg (ωt+ψe)= е/е' (9.3)

Мнимая составляющая комплексного числа вектора на комплексной плоскости определяет синусоидальное изменение э.д.с. и обозначается символом Im

e=Em sin(ωt+ψe)=Im Em е'(ωt+ψe). (9.4)

Комплексное число E j(ωt+ψe ) удобно представить в виде произведения двух комплексных чисел

Em е'(ωt+ψe)= Em е' ψe e ωt = Em е(ωt (9.5)

Первое комплексное число Em соответствующее положению вектора в начальный момент времени, называют комплексной амплитудой

Em = Em еtψe (9.6)

Второе комплексное число Eψ является оператором поворота вектора на

угол cat относительно начального положения вектора.

Следовательно, мгновенное значение синусоидальной величины равно

мнимой части без знака j произведения комплекса амплитуды Ет и

оператора вращения

e=Em sin(ωt+ψe)=Im Em еjωt. (9.7)

Переход от одной формы записи синусоидальных э.д.с, токов и

напряжений к другой осуществляется весьма просто с помощью формулы

Эйлера еjωt- cos +/sin a.

Если, например, комплексная амплитуда напряжения задана в виде

комплексного числа в алгебраической форме

Um =Um+jUm (9.8) то, чтобы записать ее в показательной форме, необходимо найти начальную фазу „, т.е. угол, который образует вектор Umс осью + 1.

В данном случае вектор Umрасположен в первом квадранте комплексной плоскости, и его начальная фаза (рисунок 9.2) определяется соотношением

Tg ψu=Um /Um (9.9)

Мгновенные значения напряжения

u=ImUm e ωt =ImUme'(ωt+ψe)= Um sin(ωt+ψe), (9.10)

Рассмотрим другой пример, когда комплексная амплитуда тока задана комплексным числом

Im=-Im+jIm (9.11)

Вектор комплексной амплитуды тока /т расположен во втором квадранте комплексной плоскости (рисунок 9.3). Начальная фаза этого тока

Ψt=180º-α (9.12)

Где tgψt=tg(180º-α)=- Im/ Im=tgα (9.13)

Если задано мгновенное значение тока в виде синусоиды / = Imsin(o)e + , то комплексную амплитуду записывают сначала показательной форме, а затем, по формуле Эйлера, переходят к алгебраической форме

I=Ieiiψ (9.14)

(9.15)

Рисунок 9.2 - начальная вектора комплексной амплитуды напряжения, расположенного в первом квадранте комплексной плоскости.

Рисунок 9.3 – первая начальная фаза вектора комплексной амплитуды тока, расположенного во втором квадранте комплексной плоскости